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Problems with Multiple Criteria

| Different features
|One decision maker

(DM) – several DMs
| Deterministic –

stochastic
| Continuous – discrete
| Nonlinear – linear
èNonlinear multiobjective

optimization



Modelling

|Modelling + simulation not
enough alone!

|Reliable models required for
optimization

|Optimization enables taking
full advantage of high-quality
models

|Challenging to combine
different models

Phenomenon/
Application

Mathematical
model

Numerical
model

Computational
model

Simulation with
computers

Vali-
dation

Optimization



Nonlinear Multiobjective
Optimization

|Most real-life problems have several conflicting objectives
to be considered simultaneously and they may be nonlinear
depending on variables

|Multiobjective optimization
Å Formulating each relevant aspect as an objective function
Å Typically easier than to try to form a single objective and measure

all relevant points of view e.g. in money
Å Reveals true nature of problem without simplifications and real

interrelationships between the objective functions
Å Can make the problem computationally easier to solve

The feasible region may turn out to be empty -> minimize constraint
violations



Problem

fi: S®R = objective function
k (³ 2) = number of

(conflicting) objective
functions

x = decision vector (of n
decision variables xi)

S Ì Rn = feasible region
formed by constraint
functions and

``minimize´´ = minimize the
objective functions
simultaneously

some constraint/objective
functions is nonlinear

We consider multiobjective optimization problems

where



Concepts
| S consists of linear, nonlinear and/or box

constraints for the variables
|We denote objective function values by zi = fi(x)
| z = (z1,…, zk) is an objective vector
| Z Ì Rk denotes the image of S; feasible

objective region
Thus z Î Z

Definition: If all functions are linear, problem is
linear (MOLP).  If some functions are nonlinear,
we have a nonlinear multiobjective optimization
problem. Problem is nondifferentiable if some
functions are nondifferentiable and convex if all
objectives and S are convex



Optimality
|Contradiction and possible incommensurability Þ
|x*Î S is Pareto optimal (PO) if there does not exist

another xÎS such that fi(x) £ fi(x*) for all i=1,…,k and
fj(x) < fj(x*) for at least one j. Objective vector z*=
f(x*)ÎZ is Pareto optimal if x* is
i.e. (z* - Rk

+\{0}) Ç Z = Æ,
that is, (z* - Rk

+) Ç Z = z*.
|PO solutions form a (possibly

nonconvex and disconnected) PO set
|x*Î S is weakly PO if there does not exist another xÎ S

such that fi(x) < fi(x*) for all i=1,…,k
i.e. (z* - int Rk

+) Ç Z = Æ.
|Properly PO: unbounded trade-offs are

not allowed. Weak PO É PO É proper PO



More
l Ranges of objective function values in PO set

Ideal objective vector z* of individual optima
Utopian objective vector z** (strictly better)
Nadir objective vector znad (estimated)

l Decision maker (DM) can express
preferences, is responsible for final solution

l Analyst is responsible for mathematical side
l Help DM in finding most preferred (PO) solution
l Solution = best possible compromise
l We need preference information from DM
l Objective vector z dominates objective

vector y if zi £ yi for all i =1,…,k and zj < yj
for at least one j

l Thus, Pareto optimal solutions are not
dominated by any other feasible solution



Local and Global Optimality
| Paying attention to the Pareto optimal set and

forgetting other solutions is acceptable only if
we know that no unexpressed or
approximated objective functions are
involved!

| Assuming DM is rational and problem
correctly specified, final solution is always PO

| A point x*Î S is locally Pareto optimal if it is
Pareto optimal in some environment of x*

| Global Pareto optimality Þ local Pareto
optimality

| Local PO Þ global PO, if S convex, fi:s
quasiconvex with at least one strictly
quasiconvex fi



More Concepts
|Value function U:Rk®R may represent preferences
|If U(z1) > U(z2) then the DM prefers z1 to z2. If U(z1)

= U(z2) then z1 and z2 are equally good (indifferent)
|U is assumed to be strongly decreasing = less is

preferred to more. Implicit U is often assumed

|Decision making can be thought of being based on
either value maximization or satisficing

|An objective vector containing the aspiration levels ži
of the DM is called a reference point žÎRk



Results
|Sawaragi, Nakayama, Tanino: Pareto

optimal solution(s) exist if
Å the objective functions are lower

semicontinuous and
Å the feasible region is nonempty and

compact
|Karush-Kuhn-Tucker optimality

conditions can be formed as a natural
extension to single objective
optimization for both differentiable and
nondifferentiable problems



Trading off
|Moving from one PO solution to another = trading off
|Definition: Given x1 and x2 Î S, the ratio of change

between fi and fj is

|Lij is a partial trade-off if fl(x1) = fl(x2) for all l=1,…,k,
l ¹i,j. If fl(x1) ¹ fl(x2) for at least one l and l ¹ i,j, then
Lij is a total trade-off

|Let d* be a feasible direction from x* Î S.  The total
trade-off rate along the direction d* is

|If fl(x*+ad*) = fl(x*) " l ¹i,j and for all 0 £a£a*, then lij
is a partial trade-off rate



Methods for Multiple Objectives
| Finding a Pareto optimal set or a representation of it

= vector optimization
| Typically methods use scalarization for converting

the problem into a single objective one
Å Scalarization contains preference information &

original objective functions
Å After scalarization, single objective optimizers are used

|Methods differ on what information is exchanged
between method ↔ DM as well as how problem is
scalarized

| Classification according to the role of the DM
• Not present, before, after or during solution process

| Based on the existence of a value function:
• ad hoc: U would not help
• non ad hoc: U helps

| Kaisa Miettinen: Nonlinear Multiobjective
Optimization, Kluwer (Springer), Boston, 1999



Scalarizing Functions

|Scalarization = combine preferences and original
problem Þ scalarized single objective
subproblem
|Resulting subproblem is solved with an

appropriate single objective optimization method
|Objective function is called scalarizing (or

scalarization) function
|Desirable properties

ÅOptimal solution is PO
ÅAny PO solution can be found



Criteria for Good Decision
Support System

|Recognizes and generates PO solutions
|Helps DM feel convinced that final solution

is the most preferred one or at least close
enough to that

|Helps DM to get a “holistic” view over PO
set

|Does not require too much time from DM to
find final solution

|Communication between DM and system
not too complicated

|Provides reliable information about
alternatives available



Four Classes of Methods
| How to support DM?
| Four types of methods (Hwang and Masud, 1979)
| No decision maker – some neutral compromise solution
| A priori methods: DM sets hopes and closest solution is found

Å Expectations may be too optimistic or pessimistic
Å Hard to express preferences without knowing the problem well

| A posteriori methods: generate representation of PO set
+ Gives information about variety of PO solutions
Å Expensive, computationally demanding
Å Difficult to represent the PO set if k > 2
o Example: evolutionary multiobjective optimization methods

| Interactive methods: iterative search process
+ Avoid difficulties above
+ Solution pattern is formed and repeated iteratively
+ Move around Pareto optimal set
+ What can we expect DMs to be able to say?
+ Goal: easiness of use
+ Cognitively valid approaches: classification and

reference point consisting of aspiration levels
| Further information: Kaisa Miettinen: Nonlinear Multiobjective

Optimization, Kluwer (Springer), 1999



Methods cont.
|No-preference methods

Å Meth. of Global Criterion
|A posteriori methods

Å Weighting Method
Å e-Constraint Method
Å Hybrid Method
Å Method of Weig. Metrics
Å Achievement Scalarizing

Function Approach
|A priori methods

Å Value Function Method
Å Lexicographic Ordering
Å Goal Programming

|Interactive methods
Å Interactive Surrogate Worth

Trade-Off Method
Å GDF Method
Å Tchebycheff Method
Å Reference Point Method
Å GUESS Method
Å Reference Direction

Approach
Å Satisficing Trade-Off

Method
Å Light Beam Search
Å NIMBUS Method



Tree  Diagram of Methods
Miettinen (1999)



No-Preference Methods:
Method of Global Criterion (Yu, Zeleny)

|Distance between z­ and Z is minimized by
Lp-metric:
if global ideal
objective vector
is known

| or by L¥-metric:

|Differentiable form of the latter:



Method of Global Criterion cont.

? The choice of p
affects greatly the
solution

+ Solution of the Lp-
metric (p < ¥) is PO

» Solution of the L¥-
metric is weakly PO
and the problem has
at least one PO
solution

+ Simple method (no
special hopes are
set)



A Posteriori Methods

| Generate the PO set,
actually a representation
of it

| Present it to the DM
| Let the DM select one
– Computationally

expensive/difficult
– Hard to select from a set
– How to display the

alternatives (if k > 2)?



Weighting Method (Gass, Saaty)
¢Problem

» Solution is weakly PO
+ Solution is PO if it is

unique or wi > 0 for all i
+ Convex problems: any

PO solution can be found
– Nonconvex problems:

some of the PO solutions
may fail to be found



Weighting Method cont.

– Weights are not easy to be understood
(correlation, nonlinear affects). Small change in
weights may change the solution dramatically

– Evenly distributed weights do not produce an
evenly distributed representation of the PO set



e-Constraint Method (Haimes et al)

| Problem

» The solution is weakly Pareto optimal
+ x* is PO iff it is a solution when ej = fj(x*)

(i=1,…,k, j¹l) for all objectives to be minimized
+ A unique solution is PO
+ Any PO solution can be found with some effort
- There may be difficulties in specifying upper

bounds



Trade-Off Information

| Let the feasible region be of the form
S = {x ÎRn | g(x) = (g1(x),…, gm(x)) T £ 0}

| Lagrange function of the e-constraint
problem is

| Under certain assumptions the coefficients
lj= llj are (partial or total) trade-off rates



Method of Weighted Metrics (Zeleny)

| Weighted metric formulations are



Method of Weighted Metrics cont.
+ If the solution is unique or the weights are positive,

the solution of Lp-metric (p<¥) is PO
+ For positive weights, the solution of L¥-metric is

weakly PO and there exists at least one PO solution
+ Any PO solution can be found with the L¥-metric

with positive weights if the reference point is
utopian but some of the solutions may be weakly PO

- All the PO solutions may not be found with p<¥
|

where r>0. This generates properly PO solutions
and any properly PO solution can be found



Achievement Functions cont.
(Wierzbicki)

| Example of order-representing functions:

where w is some fixed positive weighting vector
| Example of order-approximating functions:

where w is as above and r>0 sufficiently small.
+ The DM can obtain any arbitrary (weakly) PO

solution by moving the reference point only



Achievement Scalar. Fun. cont.

|Solution is Pareto optimal
|Any properly Pareto optimal solution can be found



Two Worlds: MCDM and EMO

Multiple criteria decision
making
Å Role of DM and decision

support emphasized
Å Role of preference

information important
Å Different types of methods -

interactive ones widely
developed

Å Solid theoretical background
(we can prove Pareto
optimality etc.)

Å Scalarization combining
objective and preferences into
real-valued functions

Evolutionary multiobjective
optimization (EMO)
ÅIdea to approximate the set of Pareto

optimal solutions
ÅCriteria: minimize distance to real

PO set and maximize diversity of
approximation

ÅNot too much emphasis on DM’s
preferences until recently

ÅCannot guarantee actual optimality
ÅE.g. nonconvexity and discontinuity

cause no difficulties
ÅBackground in applications
ÅMany benchmark problems for

testing goodness of methods (to
measure quality of approximation
generated) + performance criteria

ÅTerminology: bi-multi-many
ÅNondominated = PO in a subset



EMO
l Evolutionary algorithms: common metaheuristics
l Work well for mathematically difficult problems (no

assumptions)
l Population-based approaches
l Population of solutions is manipulated with

operations (selection, crossover, mutation) and the
population approximates the PO set

l Many different EMO methods exist
l Problems

– Diversity preserving mechanisms
– Getting close to really PO solutions

l On the other hand
– Computational effort is wasted in finding undesired solutions
– Many solutions are presented to DM who can be unable to

compare and find most preferred among them when k > 2
Many EMO methods do not work well when k>2 or 3
Combine ideas of MCDM and EMO methods



EMO cont.
| Population-based methods

Å Variables can be coded indifferent ways
Å Repeated for generations
Å At every generation, generates a set of solutions

| VEGA, RWGA, MOGA, NSGA, NSGA-II,
DPGA, SPEA-2 etc.
Å Work best when k=2

| Goals: maintaining diversity and guaranteeing
Pareto optimality – how to measure?

| Special operators have been introduced
| Typically tested with benchmark problems

with known PO sets
| For k>3: MOEA/D, NSGA-III, RVEA etc.



A Priori Methods

| DM specifies hopes,
preferences, opinions

- DM does not
necessarily know how
realistic hopes are
(expectations may be
too high)
Value Function
Method (Keeney,

Raiffa)
ì Problem



Lexicographic Ordering
|The DM must specify an absolute order of

importance for objectives, i.e., fi >>> fi+1>>> ….
|If the most important objective has a unique

solution, stop. Otherwise, optimize the second most
important objective such that the most important
objective maintains its optimal value etc.

+ The solution is Pareto optimal.
+ Some people make decisions successively.
- Difficulty: specify the absolute order of importance.
- The method is robust. The less important objectives

have very little chances to affect the final solution
- Trading off is impossible



Interactive Methods
|Most developed class of methods
| A solution pattern is formed and repeated iteratively
| DM directs the solution process, i.e. movement around PO set
| DM needs time and interest for co-operation
| Only some PO points (those that are interesting to the DM)

are generated
| DM is not overloaded with information
| DM can learn: specify and correct preferences and selections

as the solution process continues
| DM has more confidence in the final solution
| Important aspects

Å what is asked – what can we expect DMs to be able to say?
Å what is told – goal: easiness of use
Å how the problem is scalarized

| Psychological convergence!



Interactive Methods, cont.

| DM is assumed to have knowledge about the problem in
question, no deep understanding of optimization or its theory

| Solution process is iterative
| Role of DM important

Å Final solution = best possible, i.e., most preferred PO solution
Å DM is responsible for the final solution

| DM should understand how to use method
Å Information asked and given must be understandable

| Goal: easiness of use
Å no difficult questions (like cognitive mapping)
Å possibility to change one’s mind, i.e. enable learning



Interactive Methods, cont.

ØIn each iteration, the DM is shown Pareto optimal
solutions and asked to specify new preference
information to generate more satisfactory new
Pareto optimal solution(s)
ØThus, DM influences from which part of the Pareto

optimal set solutions are considered
ØDM obtains

Ø new information and insight about the interdependencies
among objective functions

Ø understanding of the feasibility of preferences
ØNew knowledge obtained may affect preferences,

leading to solutions which were not previously
considered
ØUser interface plays an important role



Core Structure Ojalehto et al, COAP (2014)

1. Initialize solution process, e.g., calculate
ideal and nadir objective vectors

2. Solve a method-specific subproblem to
generate an initial Pareto optimal solution as
a current solution

3. Ask the DM to provide preference
information related to the current solution

4. Generate new solution(s) based on the
preference information by solving
appropriate subproblem(s)

5. Ask the DM to select the best solution of the
previously generated solutions and denote it
as the current solution

6. If current solution is satisfactory, stop.
Otherwise continue from step 3



Examples of Preference
Information

v Selecting desired or undesired from a sample of
PO solutions

v Pairwise comparison
v Desirable values (->reference point) or ranges for

objective functions
v Classify objectives (improvement possible by

allowing impairment)
v Opinion of marginal rates of substitution
v Desirability of trade-offs
Different DMs prefer different formats or want to
change the format – need different methods
• Luque et al., OR Spectrum (2011), Ruiz et al,

Annals of OR (2012)



Tchebycheff Method (Steuer)
|Idea: Interactive weighting space reduction method.

Different solutions are generated with well dispersed
weights. The weight space is reduced in the
neighbourhood of the best solution

|Assumptions: Utopian objective vector is available
|Weighted distance (Tchebycheff metric) between the

utopian objective vector and Z is minimized:

|It guarantees Pareto optimality and any Pareto
optimal solution can be found



Tchebycheff Method cont.
|At first, weights between [0,1] are generated.
|Iteratively, the upper and lower bounds of the

weighting space are tightened.
|Algorithm
1) Specify number of alternatives P and number of

iterations H. Construct z­­. Set h=1.
2) Form the current weighting vector space and

generate 2P dispersed weighting vectors.
3) Solve the problem for each of the 2P weights.
4) Present the P most different of the objective

vectors and let the DM choose the most preferred.
5) If h=H, stop. Otherwise, gather information for

reducing the weight space, set h=h+1 and go to 2).



Tchebycheff Method cont.
|Non ad hoc method
+ All the DM has to do is to compare several Pareto

optimal objective vectors and select the most
preferred one.

! The ease of the comparison depends on P and k.
- The discarded parts of the weighting vector space

cannot be restored if the DM changes her/his mind.
- A great deal of calculation is needed at each

iteration and many of the results are discarded.

+ Parallel computing can be utilized.



Reference Point Method (Wierzbicki)
| Idea: Direct the search by reference points

representing desirable values for the
objectives and generate new alternatives by
shifting the reference point

| Reference point is projected onto PO set with
achievement scalarizing function

| Solution is properly PO



Reference Point Method Algorithm

| No specific assumptions
| Algorithm:
1) Present information to the DM. Set h=1.
2) Ask the DM to specify a reference point žh.
3) Minimize ach. function. Present zh to the DM.
4) Calculate k other solutions with reference points

where dh=||žh - zh|| and ei is the ith unit vector.
5) If the DM can select the final solution, stop.

Otherwise, ask the DM to specify žh+1. Set h=h+1
and go to 3).



Reference Point Method cont.

|Ad hoc method (or both)
+ Easy for the DM to understand: (s)he has to

specify aspiration levels and compare objective
vectors.

+ For nondifferentiable problems, as well
+ No consistency required
- Easiness of comparison depends on the problem
- No clear strategy to produce the final solution



Satisficing Trade-Off Method
(Nakayama et al)

| Idea: To classify the objective functions:
Å functions to be improved
Å acceptable functions
Å functions whose values can be relaxed

|Assumptions
Å functions are twice continuously differentiable
Å trade-off information is available in the KKT multipliers

|Aspiration levels from the DM, upper bounds from the
KKT multipliers

| Satisficing decision making is emphasized



Satisficing Trade-Off Method cont.
è Problem

where žh > z­­ and r>0. Solution weakly
or properly PO, respectively

|Any (properly) PO solution can be found
| Partial trade-off rate information can be

obtained from optimal KKT multipliers
of the differentiable counterpart problem



Satisficing Trade-Off Algorithm

1) Calculate z­­ and get a starting solution.
2) Ask the DM to classify the objective functions

into the three classes. If no improvements are
desired, stop.

3) If trade-off rates are not available, ask the DM to
specify aspiration levels and upper bounds.
Otherwise, ask the DM to specify aspiration
levels. Utilize automatic trade-off in specifying
the upper bounds for the functions to be relaxed.
Let the DM modify the calculated levels, if
necessary.

4) Solve the problem. Go to 2).



Background for NIMBUSÒ

| DM should understand how to use method
| Solution = best possible compromise
| DM is responsible for the final solution
| Difficult to present the Pareto optimal set,

expectations may be too high
| Interactive approach avoids these difficulties
| Move around Pareto optimal set
| How can we support the learning process?
| DM should be able to direct the solution process
| Goal: easiness of use Þ no difficult questions &

possibility to change one’s mind
| Dealing with objective function values is

understandable and straightforward



Synchronous NIMBUSÒ

Miettinen, Mäkelä, EJOR (2006)
l Scalarization is important: contains preference information
l But scalarizations based on same input give different

solutions (Miettinen, Mäkelä, OR Spec (2002))
l Which is the best? Þ Synchronous NIMBUSÒ

l 1-4 scalarized problem(s) formed to obtain different PO
solutions

l Show them to the DM & let her/him choose the best
l DM can see how realistic hopes were and can adjust them
l Versatile possibilities to direct solution process

l Besides classification, intermediate solutions between
PO solutions can be generated

l Classification and comparison of alternatives are used in
the extent the DM desires

l DM can learn during the iterative solution process and only
PO solutions that are interesting to her/him are generated



Classification in NIMBUS

| DM directs the search by classification: Classification of
objective functions into up to 5 classes

| Classification: DM indicates desirable changes in the
current PO objective function values fi(xh)

| Classes: functions fi whose values
Å should be decreased (iÎI<)
Å should be decreased till some aspiration level ži

h < fi(xh) (iÎI£)
Å are satisfactory at the moment (iÎI=)
Å are allowed to increase up till some upper bound ei

h>fi(xh) (iÎI>)
Å are allowed to change freely (iÎIà)

| DM must be willing to give up something
| Miettinen, Mäkelä: Optim (1995), JORS (1999), Comp&OR

(2000), EJOR (2006)



NIMBUSÒ Method cont.
|Solve subproblem

where r > 0; appropriate single objective optimizer
|Solution properly PO. Any PO solution can be

found
|Solution satisfies desires as well as possible –

feedback of tradeoffs
|Possible to save interesting solutions and return to

them later
|We have 3 more subproblems to get more solutions



Other Subproblems

|Classification implies reference point but not vice
versa

|We use reference point based subproblems
|Components of reference point are obtained from

classification information
Å I< : corresponding component of ideal objective vector
Å I£ : aspiration level specified by the DM
Å I = : current objective function valuer
Å I³ : upper bound specified by the DM
Å I> : corresponding component of nadir objective vector



| Intermediate solutions between xh and x’h: f(xh+tjdh), where dh=
xh’- xh and tj=j/(P+1)

| Search iteratively around the PO set until DM does not want to
improve or impair any objective

| Ad hoc method
+ Versatile possibilities for the DM: classification, comparison,

extracting undesirable solutions
+ Does not depend entirely on how well the DM manages in

classification. (S)he can e.g. specify loose upper bounds and
get intermediate solutions

+ Works for nondifferentiable/nonconvex problems
+ No consistency is required – learning-oriented method

NIMBUS Method - Remarks



1) Choose starting solution and project it to be PO.
2) Ask DM to classify the objectives and to specify

related parameters. Solve 1-4 subproblems.
3) Present different solutions to DM.
4) If DM wants to save solutions, update database.
5) If DM does not want to see intermediate solutions,

go to 7). Otherwise, ask DM to select the end points
and the number of solutions.

6) Generate and project intermediate solutions. Go to
3).

7) Ask DM to choose the most preferred solution. If
DM wants to continue, go to 2). Otherwise, stop.

NIMBUSÒ Algorithm



|WWW-NIMBUS® http://nimbus.it.jyu.fi/
Å The first, unique interactive optimization system on the

Internet since 1995
Å Centralized computing & distributed interface
Å Latest version always available
Å Graphical user-interface via WWW
Å Available & free for any academic Internet user
Å Tutorial and online help

|IND-NIMBUSÒ http://ind-nimbus.it.jyu.fi/
Å For MS-Windows and Linux operating systems
Å Can be connected with different modelling and simulation

tools like GAMS, Matlab, GPS-X, APROS
Å Different  local and global solvers and their hybrids
Å User can change solver and its parameters
Å E.g. wide applicability of single-objective evolutionary

approaches available (Miettinen, Materials & Manuf.
Processes 2007)

WWW-NIMBUS® and IND-NIMBUSÒ









IND-NIMBUSÒ Views
Objective
function
values and
classification

Numerical
classification
boundaries

Initial PO
solution



IND-NIMBUSÒ Views

NIMBUS
classification
by clicking
objective bar

New
solutions
calculated
with a play
button

New PO
solutions

Initial PO
solution



Computational Challenges

of complex simulation-based optimization
We need tools for handling
l Computational cost

– Objective and constraint functions depend on output of
simulation models – may be time-consuming

l Black-box models
– Global optimization needed -> computational cost

l One can train a computationally inexpensive
surrogate (metamodel) to each expensive function
but training is not straightforward and there are
alternatives

l EMO methods for computationally expensive:
l ParEGO, SMS-EGO, K-RVEA



Hybrid Methods
l Put together ideas of different methods to form new

ones
l Aim: at the same time

l combine strengths and benefits
l avoid weaknesses

l A posteriori methods
l information of whole PO set – possibilities and limitations

l Interactive methods
l DM can learn about the problem, its interdependencies

and adjust preferences
l DM can concentrate on interesting solutions
l computationally less costly

l Hybrids combining a posteriori and interactive methods



Pareto Navigator
Eskelinen et al., OR Spectrum (2010)

l Background & motivation
– I Learning phase II Decision phase
– Challenges of computationally expensive problems

l Pareto optimal set = actual PO set
l Learning-oriented interactive method
l Hybrid method: first a posteriori and then

interactive method (assume convexity)
l relatively small) set of Pareto optimal solutions
l polyhedral approximation of PO set in objective

space – approximated  PO set
l Convenient and real-time navigation

– Preference information: reference point
– Project to actual PO set

l Instead of approximating objective functions
we directly approximate PO set



Pareto Navigator View
Based on the
information
given, new
approximated
PO solutions
are generated

to project
them to real
PO solutions

or as a
starting point
for new
navigation

Approximated
solutions can
be used



l This is what happens in objective space during
the solution process
(polyhedral approximation and actual PO set)

Example in 3D



NAUTILUS – Background
Miettinen et al., EJOR (2010)

l Challenge: typically methods deal with Pareto optimal
solutions only
– No other solutions are expected to be interesting for the DM
– Trading off necessitated: impairment in some objective(s) must

be allowed in order to get a new solution
l Past experiences affect DMs’ hopes

– DMs do not react symmetrically to gains and losses
– Necessity of trading off (sacrifice) may hinder DM’s willingness

to move from the current PO solution
– Anchoring: solutions considered may fix our expectations (DM

fixes one’s thinking on some (possible irrelevant) information
– Time available for solution process limited
– Choice of starting point may play a significant role

Ø Most preferred solution may not be found
Ø Negotiation support for group decision making

Ø Negotiators easily anchor at starting Pareto optimal solution if it
is advantageous for their interests



Idea of NAUTILUS

l DM starts from the worst e.g. nadir objective vector
and moves towards PO set
l Improvement in each objective at every iteration
l Possible to gain at every iteration – no need for sacrifices

l At each iteration, objective vector obtained
dominates the previous one

l Only the final solution is Pareto optimal
l DM can always go backwards if desired
l DM can approach any part of PO set (s)he wishes
l Different NAUTILUS variants use different ways of

expressing preference information to form direction
of simultaneous improvement
l Ruiz et al, EJOR (2015)
l Miettinen et al, JOGO (2015)
l Miettinen, Ruiz, J Bus Econ (2016)



1f

nadzz =0

lo,1zz =**

Z=f (S)

lo,2z

1f

1z
2z

2f

lo,3z

At each iteration range of reachable obj. function values shrinks



NAUTILUS - Remarks
l During the solution process, connection to

decision variable space is temporarily lost
– Iteration points generated are only defined in

objective space
– We know that a feasible solution and corresponding

obj.vector better than the current vector exist
l Allows free search
l Avoids need of trading off – should allow the

DM to learn better of what is available/possible
l Provides new perspective to solving

multiobjective optimization problems
l Solution process can be continued with other

(interactive) methods, if needed



3-Stage Approach
Steponavice et al., Computer-Aided Design

(2014)



E-NAUTILUS
Ruiz et al., EJOR

(2015)

DM sets number of points
to compare (here 6) and
number of iterations (here 3)



NAUTILUS Navigator
with A. B. Ruiz, F. Ruiz, V. Ojalehto

l Idea: DM can navigate from worst possible to most
preferred objective function values

l A priori: Set of (approximated) PO solutions
– Generated before involving DM

l Interaction: With NAUTILUS Navigator DM can navigate
from inferior solution to most preferred one by gaining in
all objective functions simultaneously, at each iteration

l Preference information: reference point (aspiration levels)
and bounds not to be exceeded

l As solution process approaches set of PO solutions,
ranges of objective function values that are still reachable
without trading-off shrink and DM sees this in real time



NAUTILUS Navigator cont.
• GUI with reachable range paths consisting of two plot lines;

lowest and highest reachable values from current iteration
• DM can see history, no need to remember it





On Visual Illustration
Miettinen, OR Spec (2014)

l The decision maker (DM) is often asked to
compare several alternatives
– e.g. within interactive methods
– Graphs and table complement each other

l Illustration is difficult but important
– easy to comprehend
– important information should not be lost
– no unintentional information should be included
– makes it easier to see essential similarities and

differences
l DMs have different cognitive styles



Examples



Experiences
l Collaboration with experts of problem

domains
l Positive experiences
l DM receives a new perspective

– can consider different objectives
simultaneously, not one by one

– interdependencies and interactions between
objectives to be observed

– DM learns about the conflicting qualitative
properties

– new insight to challenging and complex
phenomena

l Experiences of DMs
– methods easy to use – understandable

questions
– DM can find a satisfactory solution and be

convinced of its goodness
– confidence: best solution was found



Some Applications
Ø Chemical process design
Ø Hakanen et al., JMCDA (2005), Appl Therm Eng (2006)
Ø Two-stage separation process
Ø Sindhya et al., Exp Syst with Appl (2014)

Ø Heat Exchanger Network Synthesis
Ø Laukkanen et al., Computers and Chem Eng (2010), Appl Therm Eng

(2012)
Ø Brachytherapy planning
Ø Ruotsalainen et al., Phys Med Biol (2010)

Ø Wastewater Treatment Planning
Ø Hakanen et al., DSS (2011), Env Mod & Softw (2013)

Ø Design and Operation of Paper Maching
Ø Steponavice et al., Comp-Aided Design (2014)

Ø Data-based Forest Management with Uncertainties
Ø Hartikainen et al., Proceed. MOD 2016

Ø Design of Permanent Magnet Synchronous Generator
Ø Sindhya et al. IEEE Trans Ind Elect (to appear)

Ø Design of air intake ventilation system in tractor cabin
Ø Chugh et al. Proceed. CEC 2017 - best student paper



Furthermore
l Open source framework DESDEO wit

interactive methods – try it!
– desdeo.it.jyu.fi

l Decision analytics - data driven decision
support – thematic research area: DEMO
– Instead of models we have data available
– Applications incl. forest treatment planning,

inventory management and punishing criminals
– http://www.jyu.fi/demo

l We welcome visitors!
l Open PhD student positions twice a year
l EMO2019: www.emo2019.org/

http://www.jyu.fi/demo


Conclusions
l Compromise is better than optimum!
l Plenty of real-life applications are waiting for

us and provide various challenges!
l Hybridization of different methods offers a

lot of potential
l Book aims at bringing MCDM and EMO

fields closer to each other:
Branke, Deb, Miettinen, Slowinski (Eds.):
Multiobjective Optimization: Interactive and
Evolutionary Approaches, Springer-Verlag, 2008

l Method selection depends e.g. on
– Properties of problem
– Availability of DM
– Preference information type comfortable for DM
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