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Problems with Multiple Criteria

s Different features

s One decision maker
(DM) — several DMs

s Deterministic —
stochastic

s Continuous — discrete
s Nonlinear — linear

C Nonlinear multiobjective
optimization



Modelling

s Modelling + simulation not
enough alone!

s Reliable models required for
optimization

s Optimization enables taking
full advantage of high-quality
models

s Challenging to combine
different models
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Nonlinear Multiobjective
Optimization

S Most real-life problems have several conflicting objectives
to be considered simultaneously and they may be nonlinear
depending on variables

s Multiobjective optimization
& Formulating each relevant aspect as an objective function

& Typically easier than to try to form a single objective and measure
all relevant points of view e.g. in money

& Reveals true nature of problem without simplifications and real
Interrelationships between the objective functions

& Can make the problem computationally easier to solve

» The feasible region may turn out to be empty -> minimize constraint
violations



Problem

We consider multiobjective optimization problems
~ f1(x) f.. s—r = objective function
. fa(x) k (2 2) = number of
TS 5 (conflicting) objective
| fu(x) functions

X = decision vector (of n
decision variables x;)

in other words S E R" = feasible region

. formed by constraint
minimize  {f1(x), f2(x),..., s(X)}  functions and

subject to  x € 5, ““minimize”” = minimize the
objective functions
simultaneously

some constraint/objective
functions iIs nonlinear

subject to x € 5,

where



Concepts

s S consists of linear, nonlinear and/or box
constraints for the variables

s We denote objective function values by z;, = f,(x)
s z=(z,..., Z) IS an objective vector

s Z E RX denotes the image of S; feasible
objective region
Thusz 1 Z

Definition: If all functions are linear, problem is
linear (MOLP). If some functions are nonlineatrr,
we have a nonlinear multiobjective optimization
problem. Problem is nondifferentiable if some
functions are nondifferentiable and convex if all
objectives and S are convex




Optimality
s Contradiction and possible incommensurability Y

sx*1 Sis Pareto optimal (PO) if there does not exist
another x 1S such that f;(x) ¢ f;(x*) for all i=1,...,kand
f;(x) < fj(x*) for at least one J. Objective vector z*—
fJ(x*) I Z IS Pareto optimal If x* Is .

i.e. (z*-R<\{0}) EZ=A,
thatis, (z*-Rk,) £Z=7z*.

s PO solutions form a (possibly
nonconvex and disconnected) PO set

sx*1 S is weakly PO if there does not exist another x¥ S

such that f;(x) < f(x*) for all 1=1,...,k 4
i.e. (z*-intRk) EZ=A.

s Properly PO: unbounded trade-offs are

not allowed. Weak PO E PO E proper PO , -

i




More

Ranges of objective function values in PO set
» Ideal objective vector z* of individual optima
» Utopian objective vector z** (strictly better)“

» Nadir objective vector z"ad (estimated) -}
Decision maker (DM) can express
preferences, is responsible for final solution
Analyst is responsible for mathematical side

Help DM in finding most preferred (PO) solution
Solution = best possible compromise

We need preference information from DM *:
Objective vector z dominates objective
vectory if z; ¢ y; for all 1 =1,... .k and z; <Yy,
for at least one |

Thus, Pareto optimal solutions are not

dominated by any other feasible solution

1



ocal and Global Optimality

s Paying attention to the Pareto optimal set and
forgetting other solutions is acceptable only if
we know that no unexpressed or
approximated objective functions are
Involved!

s Assuming DM is rational and problem
correctly specified, final solution is always PO

s A point x*1 S is locally Pareto optimal if it is
Pareto optimal in some environment of x*

s Global Pareto optimality Y local Pareto
optimality

s Local PO Y global PO, if S convex, f:s
guasiconvex with at least one strictly
quasiconvex f



More Concepts

s Value function U:Rk—R may represent preferences

sif U(z1) > U(z?) then the DM prefers z1 to z2. If U(z1)
= U(z?) then z! and z2 are equally good (indifferent)

s U is assumed to be strongly decreasing = less Is
preferred to more. Implicit U is often assumed

s Decision making can be thought of being based on
either value maximization or satisficing

S AN objectlve vector containing the asplratlon levels z,
of the DM is called a reference point Z IRk



Results

sSawaragi, Nakayama,

Tanino: Pareto

optimal solution(s) exist If

athe objective functions
semicontinuous and

are lower

athe feasible region is nonempty and

compact

sKarush-Kuhn-Tucker optimality
conditions can be formed as a natural

extension to single obj
optimization for both ©
nondifferentiable prob

ective
Ifferentiable and
ems



Trading off

s Moving from one PO solution to another = trading off

s Definition: Given xt and x2 1 S, the ratio of change
between f. and f, Is ] (2
! J Ay = Ay(xt, x° :fl(x)_ﬁ(x).
= Rl = ) 6
SL,;is a partial trade-off if f(x!) = f(x?) for all I=1,... k,
| 1,j. If f(x1) , f,(x?) for at leastone land | | i,j, then
L; Is a total trade-off

slLet d* be a feasible direction from x* 1 S. The total
trade-off rate along the direction d* is

)\ij — )\ij(x*, d*) = lim Aij(X* -+ &d*,}(*).

cx—()

st f(x*+ad*) = f(x*) ** I, I,j and for all 0 ¢a¢a*, then | ;
IS a partial trade-off rate



s Finding a Pareto optimal set or a representation of it
= vector optimization

s Typically methods use scalarization for converting
the problem into a single objective one

& Scalarization contains preference information &
original objective functions

& After scalarization, single objective optimizers are used

S Methods differ on what information is exchanged
between method =z DM as well as how problem is
scalarized

s Classification according to the role of the DM
Not present, before, after or during solution process

S Based on the existence of a value function:
 ad hoc: U would not help
e non ad hoc: U helps

s Kaisa Miettinen: Nonlinear Multiobjective
Optimization, Kluwer (Springer), Boston, 1999



Scalarizing Functions

s Scalarization = combine preferences and original
problem Y scalarized single objective
subproblem

sResulting subproblem is solved with an
appropriate single objective optimization method

sObjective function is called scalarizing (or
scalarization) function
ssDesirable properties

& Optimal solution is PO
& Any PO solution can be found



Criteria for Good Decision
Support System

S Recognizes and generates PO solutions

s Helps DM feel convinced that final solution
IS the most preferred one or at least close
enough to that

s Helps DM to get a “holistic” view over PO
set

s Does not require too much time from DM to
find final solution

s Communication between DM and system
not too complicated

ss Provides reliable information about
alternatives available
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Four Classes of Methods

How to support DM?
Four types of methods (Hwang and Masud, 1979)
No decision maker — some neutral compromise solution

A priori methods: DM sets hopes and closest solution is found
& Expectations may be too optimistic or pessimistic
& Hard to express preferences without knowing the problem well

A posteriori methods: generate representation of PO set
+ Gives information about variety of PO solutions
& Expensive, computationally demanding
& Difficult to represent the PO set if k > 2
o Example: evolutionary multiobjective optimization methods
Interactive methods: iterative search process
+ Avoid difficulties above
Solution pattern is formed and repeated iteratively
Move around Pareto optimal set
What can we expect DMs to be able to say?
Goal: easiness of use
Cognitively valid approaches: classification and
reference point consisting of aspiration levels

Further information: Kaisa Miettinen: Nonlinear Multiobjective
Optimization, Kluwer (Springer), 1999

+ + + + o+



Methods cont.

s No-preference methods s Interactive methods

& Meth. of Global Criterion 2 Interactive Surrogate Worth
s A posteriori methods Trade-Off Method

& Weighting Method & GDF Method

& e-Constraint Method a Tchebycheff Method

& Hybrid Method a Reference Point Method

& Method of Weig. Metrics 2 GUESS Method

& Achievement Scalarizing
Function Approach Approach

SA: priort mEt_hOdS a Satisficing Trade-Off
a Value Function Method Method

& Lexicographic Ordering
& Goal Programming

a Reference Direction

& Light Beam Search
& NIMBUS Method



Tree Diagram of Methods

Miettinen (1999)
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No-Preference Methods:
Method of Global Criterion (yu, zeleny)

s Distance between zl and Z is minimized 013;
L _-metric: o k AR
if%lobal ideal THRIMLEZE (Z (fix) = 27)" )

=1

objective vector
IS known
*

S or by L,-metric:  minimize  max [f;(x) — 7]

subject to x€ 8

subject to x € S.
s Differentiable form of the latter:
MInimize ¥
subject to  a > (fi(x) — 2}), foralli=1,...,k,
x €5,



Method of Global Criterion cont.

? The choice of p
affects greatly the
solution

Solution of the Lp-
metric (p < v) is PO

Solution of the L-
metric i1s weakly PO
and the problem has
at least one PO
solution

Simple method (no
special hopes are
set)

Z

L | - metrc
L = - metoc

L _ .
- metric



A Posteriori Methods

s Generate the PO set,
actually a representation
of It

s Present it to the DM

S Let the DM select one

— Computationally
expensive/difficult

— Hard to select from a set

— How to display the
alternatives (if k > 2)?




A PrObIem minimize

subject to

where

° Solution is weakly PO

+ Solution is PO If It IS
unique or w; > 0 for all I

+ Convex problems: any
PO solution can be found

— Nonconvex problems:
some of the PO solutions
may fail to be found

k

D w; fi(x)
i=1
x €5,
k
Z w; — 1



Weighting Method cont.

Z

w121+ wlzz 21 w121+ wlzl 11

Figure 3. Convex and nonconvex problems.

— Weights are not easy to be understood
(correlation, nonlinear affects). Small change In
weights may change the solution dramatically

— Evenly distributed weights do not produce an
evenly distributed representation of the PO set



e-Constraint Method (Haimes et al)

S Problem

minimize  f7{x)
subject to  fi(x) <eg;, forall j=1,...,k,7 #¢
x € 85.
° The solution Is weakly Pareto optimal
+ x* Is PO Iff it is a solution when e; = f;(x*)
(I=1,...,k, J, I) for all objectives to be minimized
+ A unique solution is PO
+ Any PO solution can be found with some effort

- There may be difficulties in specifying upper
bounds



Trade-Off Information

S Let the feasible region be of the form
S={x IR"|g(x) = (9:(x),..., gn(x)) ' ¢ O}
s Lagrange function of the e-constraint

problem is m
fe(x) + Z Ai(fi(x) —&;) + Z 1igi(X).-

J#e

s Under certain assumptions the coefficients
| =1 are (partial or total) trade-off rates



Method of Weighted Metrics (Zeleny)

s Weighted metric formulations are

. 1/p

minimize (Z W (f i(x) — 3:) p)
i—1

subject to x € 8

and

minimize 1]:-!_::1?5;.: [‘wi (f g (K) — 3:)1

subject to x € 5,

where w; > () for all 1+ and E:‘;l w; = 1.



Method of Weighted Metrics cont.

+ |If the solution iIs unique or the weights are positive,
the solution of L,-metric (p<=) Is PO

+ For positive weights, the solution of L -metric is
weakly PO and there exists at least one PO solution

+ Any PO solution can be found with the L-metric
with positive weights if the reference point is
utopian but some of the solutions may be weakly PO

- All the PO solutions may not be found with p<a

min max Lwi(fi(x) -I—,OZ filx

s.t. xX€S5,

where r >0. This generates properly PO solutions
and any properly PO solution can be found



Achievement Functions cont.
(Wierzbicki)

s Example of order-representing functions:

sz(z) = llg;iliaﬂxk[Wi(Zi — Zi)],

where w Is some fixed positive weighting vector
s Example of order-approximating functions:

sz(z) = llililtaé(k wilz; — Z)] + prz — Zi),
where w Is as above and r >0 sufficiently small.

+ The DM can obtain any arbitrary (weakly) PO
solution by moving the reference point only



Achievement Scalar. Fun. cont.

S(f(X)) — ax [wz(fz( ) o zz +pzwz fz — Z‘i)

i=1,....k

s Solution Is Pareto optimal
sAny properly Pareto optimal solution can be found



Two Worlds: MCDM and EMO

Multiple criteria decision
making

& Role of DM and decision
support emphasized

& Role of preference
Information important

& Different types of methods -
Interactive ones widely
developed

& Solid theoretical background
(we can prove Pareto
optimality etc.)

& Scalarization combining
objective and preferences into
real-valued functions

Evolutionary multiobjective
optimization (EMO)
aldea to approximate the set of Pareto
optimal solutions

aCriteria: minimize distance to real
PO set and maximize diversity of
approximation

aNot too much emphasis on DM’s
preferences until recently

& Cannot guarantee actual optimality

&aE.g. nonconvexity and discontinuity
cause no difficulties

aBackground in applications

aMany benchmark problems for
testing goodness of methods (to
measure quality of approximation
generated) + performance criteria

aTerminology: bi-multi-many

aNondominated = PO in a subset



EMO

Evolutionary algorithms: common metaheuristics
Work well for mathematically difficult problems (no
assumptions)

Population-based approaches

Population of solutions is manipulated with
operations (selection, crossover, mutation) and the
population approximates the PO set

Many different EMO methods exist

Problems

— Diversity preserving mechanisms
— Getting close to really PO solutions

On the other hand

— Computational effort is wasted in finding undesired solutions
— Many solutions are presented to DM who can be unable to
compare and find most preferred among them when k > 2
® Many EMO methods do not work well when k>2 or 3

&® Combine ideas of MCDM and EMO methods



EMO cont.

s Population-based methods
& Variables can be coded indifferent ways
& Repeated for generations
& At every generation, generates a set of solutions

S VEGA, RWGA, MOGA, NSGA, NSGA-II,
DPGA, SPEA-2 etc.
a Work best when k=2

s Goals: maintaining diversity and guaranteeing
Pareto optimality — how to measure?

s Special operators have been introduced

s Typically tested with benchmark problems
with known PO sets

s For k>3: MOEA/D, NSGA-I1II, RVEA etc.



A Priori Methods

maximize U(f;(x),..., fr(x))

s DM specifies hopes,
preferences, opinions

- DM does not
necessarily know how
realistic hopes are
(expectations may be
too high)

Value Function
Method (Keeney,

Raiffa)
P Problem

subject to x €S

contours of U



_exicographic Ordering

s The DM must specify an absolute order of
Importance for objectives, I1.e., f; >>> 1, >>> ...

s If the most important objective has a unique
solution, stop. Otherwise, optimize the second most
Important objective such that the most important
objective maintains its optimal value etc.

+ The solution Is Pareto optimal.
+ Some people make decisions successively.
- Difficulty: specify the absolute order of importance.

- The method Is robust. The less important objectives
have very little chances to affect the final solution

- Trading off is impossible



Interactive Methods

S Most developed class of methods

s A solution pattern is formed and repeated iteratively

s DM directs the solution process, i.e. movement around PO set
S DM needs time and interest for co-operation

s Only some PO points (those that are interesting to the DM)
are generated

s DM is not overloaded with information

s DM can learn: specify and correct preferences and selections
as the solution process continues

ss DM has more confidence in the final solution

S Important aspects
& what is asked — what can we expect DMs to be able to say?
& what is told — goal: easiness of use
& how the problem is scalarized

s Psychological convergence!



Interactive Methods, cont.

s DM is assumed to have knowledge about the problem in
question, no deep understanding of optimization or its theory

s Solution process is iterative

S Role of DM important
& Final solution = best possible, i.e., most preferred PO solution
& DM is responsible for the final solution

s DM should understand how to use method
& Information asked and given must be understandable

s Goal: easiness of use
& no difficult questions (like cognitive mapping)
& possibility to change one’s mind, i.e. enable learning



Interactive Methods, cont.

UlIn each iteration, the DM is shown Pareto optimal
solutions and asked to specify new preference
Information to generate more satisfactory new
Pareto optimal solution(s)

UThus, DM inpuences from which part of the Pareto
optimal set solutions are considered

UDM obtains

a new information and insight about the interdependencies
among objective functions

u understanding of the feasibility of preferences
UNew knowledge obtained may affect preferences,

leading to solutions which were not previously
considered

UUser interface plays an important role



Core Structure ojaentoet al, coap (2014

1. Initialize solution process, e.g., calculate
Ideal and nadir objective vectors

2. Solve a method-speciyc subproblem to
generate an Initial Pareto optimal solution as
a current solution

3. Ask the DM to provide preference
Information related to the current solution

4. Generate new solution(s) based on the
preference information by solving
appropriate subproblem(s)

5. Ask the DM to select the best solution of the
previously generated solutions and denote it
as the current solution

6. If current solution is satisfactory, stop.
Otherwise continue from step 3



X

X

Examples of Preference
Information

Selecting desired or undesired from a sample of
PO solutions

Palrwise comparison

Desirable values (->reference point) or ranges for
objective functions

Classify objectives (improvement possible by
allowing impairment)

Opinion of marginal rates of substitution
Desirability of trade-offs

Different DMs prefer different formats or want to
change the format — need different methods

Luque et al., OR Spectrum (2011), Ruiz et al,
Annals of OR (2012)



Tchebycheff Method (Steuer)

s ldea: Interactive weighting space reduction method.
Different solutions are generated with well dispersed
weights. The weight space is reduced in the
neighbourhood of the best solution

s Assumptions: Utopian objective vector is available

s Weighted distance (Tchebycheff metric) between the
utopian objective vector and Z is minimized:

k
wi(fi(x) =27, ) (fi(x) = 7)
i=1

lex minimize max |
i=1,....k

subject to X € S.

s It guarantees Pareto optimality and any Pareto
optimal solution can be found



Tchebycheff Method cont.

s At first, weights between [0,1] are generated.

s Iteratively, the upper and lower bounds of the
welighting space are tightened.

s Algorithm

1) Specify number of alternatives P and number of
iterations H. Construct zl | . Set h=1.

2) Form the current weighting vector space and
generate 2P dispersed weighting vectors.

3) Solve the problem for each of the 2P weights.

4) Present the P most different of the objective
vectors and let the DM choose the most preferred.

5) If h=H, stop. Otherwise, gather information for
reducing the weight space, set h=h+1 and go to 2).




Tchebycheff Method cont.

s Non ad hoc method

+ All the DM has to do Is to compare several Pareto
optimal objective vectors and select the most
preferred one.

I The ease of the comparison depends on P and k.

- The discarded parts of the weighting vector space
cannot be restored if the DM changes her/his mind.

- A great deal of calculation is needed at each
Iteration and many of the results are discarded.

+ Parallel computing can be utilized.



Reference Point Method (Wierzbicki)

S ldea: Direct the search by reference points
representing desirable values for the
objectives and generate new alternatives by
shifting the reference point

s Reference point is projected onto PO set with
achievement scalarizing function

s Solution is properly PO
fi(x) —

i Fi(x)

] + nad

minimize maxk [
%

subject to x e S.

Figure 6. Altering the reference points.



Reference Point Method Algorithm

s No specific assumptions
s Algorithm:
1) Present information to the DM. Set h=1.
2) Ask the DM to specify a reference point z".
3) Minimize ach. function. Present z" to the DM.
4) Calculate k other solutions with reference points
z(i) = 2" + d"e’,
where d'=||z" - z"|| and €' is the ith unit vector.

5) If the DM can select the final solution, stop.
Otherwise, ask the DM to specify 21, Set h=h+1

and go to 3).



Reference Point Method cont.

s Ad hoc method (or both)

+ Easy for the DM to understand: (s)he has to
specify aspiration levels and compare objective
vectors.

+ For nondifferentiable problems, as well

+ NO consistency required

- Easiness of comparison depends on the problem
- No clear strategy to produce the final solution



Satisficing Trade-Off Method
(Nakayama et al)

s ldea: To classify the objective functions:
& functions to be improved
& acceptable functions
& functions whose values can be relaxed
s Assumptions
& functions are twice continuously differentiable
& trade-off information is available in the KKT multipliers

s Aspiration levels from the DM, upper bounds from the
KKT multipliers

s Satisficing decision making Is emphasized



Satisficing Trade-Off Method cont.

C Problem

Or

max fi(x) Z filx -
1<i<k | 2z — 2 Z — z** z

where ">zl and r >O. Solutlon weakly
or properly PO, respectively

s Any (properly) PO solution can be found

s Partial trade-off rate information can be
obtained from optimal KKT multipliers
of the differentiable counterpart problem



Satisficing Trade-Off Algorithm

1)
2)

3)

4)

Calculate zI 1 and get a starting solution.

Ask the DM to classify the objective functions
Into the three classes. If no Improvements are
desired, stop.

If trade-off rates are not available, ask the DM to
specify aspiration levels and upper bounds.
Otherwise, ask the DM to specify aspiration
levels. Utilize automatic trade-off in specifying
the upper bounds for the functions to be relaxed.
et the DM modify the calculated levels, if
necessary.

Solve the problem. Go to 2).
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Background for NIMBUSN

DM should understand how to use method
Solution = best possible compromise

DM is responsible for the final solution
Difficult to present the Pareto optimal set,
expectations may be too high

Interactive approach avoids these difficulties
Move around Pareto optimal set

How can we support the learning process?

DM should be able to direct the solution process
Goal: easiness of use Y no difficult questions &
possibility to change one’s mind

Dealing with objective function values is
understandable and straightforward



Synchronous NIMBUSN
Miettinen, Makela, EJOR (2006)

Scalarization is important: contains preference information

But scalarizations based on same input give different
solutions (Miettinen, Makeld, OR Spec (2002))

Which is the best? Y Synchronous NIMBUSN

1-4 scalarized problem(s) formed to obtain different PO
solutions

Show them to the DM & let her/nim choose the best
DM can see how realistic hopes were and can adjust them
Versatile possibilities to direct solution process

Besides classification, intermediate solutions between
PO solutions can be generated

Classification and comparison of alternatives are used in
the extent the DM desires

DM can learn during the iterative solution process and only
PO solutions that are interesting to her/him are generated

>

>

>
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Classification in NIMBUS

DM directs the search by classification: Classification of
objective functions into up to 5 classes

Classification: DM indicates desirable changes in the
current PO objective function values f,(x")

Classes: functions f;whose values
a should be decreased (i I1<)
a should be decreased till some aspiration level zh < f.(x") (i11¢)
a are satisfactory at the moment (il I7)
a are allowed to increase up till some upper bound e;">f,(x") (il I?)
a are allowed to change freely (i T'1?)

DM must be willing to give up something

Miettinen, Mékeld: Optim (1995), JORS (1999), Comp&OR
(2000), EJOR (2006)



NIMBUSN Method cont.

s Solve subproblem )
- k
nin max | J180 = 2 fi(x) —z;| | 3 fi(x)
ic1< | 2nad _ ax? nad _ k% ! nad _ _xx
s L i % i i=1 "~ i

s.t. fi(x) < fi(x¢) forall ieI<UISUIT,
fi(x) <e; forall ielI2,

x € 5,
where r > 0; appropriate single objective optimizer

s Solution properly PO. Any PO solution can be
found

s Solution satisfies desires as well as possible —
feedback of tradeoffs

s Possible to save interesting solutions and return to
them later

s We have 3 more subproblems to get more solutions

1 %4




Other Subproblems

s Classification implies reference point but not vice
versa

s We use reference point based subproblems

ss Components of reference point are obtained from
classification information
& I< : corresponding component of ideal objective vector
a 1% aspiration level specified by the DM
& | = current objective function valuer
a |I* : upper bound specified by the DM
& I” : corresponding component of nadir objective vector



NIMBUS Method - Remarks

S Intermediate solutions between x" and x’": f(x"+t,d"), where d"=
x"- x" and t=j/(P+1)

s Search iteratively around the PO set until DM does not want to
Improve or impair any objective
s Ad hoc method

+ Versatile possibilities for the DM: classification, comparison,
extracting undesirable solutions

+ Does not depend entirely on how well the DM manages in
classification. (S)he can e.g. specify loose upper bounds and
get intermediate solutions

+ Works for nondifferentiable/nonconvex problems
+ No consistency is required — learning-oriented method



NIMBUSN Algorithm

1) Choose starting solution and project it to be PO.

2) Ask DM to classify the objectives and to specify
related parameters. Solve 1-4 subproblems.

3) Present different solutions to DM.
4) If DM wants to save solutions, update database.

5) If DM does not want to see intermediate solutions,
go to 7). Otherwise, ask DM to select the end points
and the number of solutions.

6) Generate and project intermediate solutions. Go to
3).

7) Ask DM to choose the most preferred solution. If
DM wants to continue, go to 2). Otherwise, stop.



WWW-NIMBUS®and IND-NIMBUSN

sWWW-NIMBUS® http://nimbus.it.jyu.fi/

& The first, unique interactive optimization system on the
Internet since 1995

& Centralized computing & distributed interface
& Latest version always available

& Graphical user-interface via WWW

& Available & free for any academic Internet user
& Tutorial and online help

s IND-NIMBUSN http://ind-nimbus.it.jyu.fi/
& For MS-Windows and Linux operating systems

& Can be connected with different modelling and simulation
tools like GAMS, Matlab, GPS-X, APROS

& Different local and global solvers and their hybrids
& User can change solver and its parameters

& E.g. wide applicability of single-objective evolutionary
approaches available (Miettinen, Materials & Manuf.
Processes 2007)
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Visualizations
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Computational Challenges

of complex simulation-based optimization

We need tools for handling
. Computational cost

— Objective and constraint functions depend on output of
simulation models — may be time-consuming

_ Black-box models
— Global optimization needed -> computat

lonal cost

. One can train a computationally inexpensive
surrogate (metamodel) to each expensive function

but training Is not straightforward anc
alternatives

there are

. EMO methods for computationally expensive:

ParEGO, SMS-EGO, K-RVEA

>



>

Hybrid Methods

Put together ideas of different methods to form new
ones

Aim: at the same time
. combine strengths and benefits
_ avoid weaknesses

A posteriori methods
. Information of whole PO set — possibilities and limitations

Interactive methods

. DM can learn about the problem, its interdependencies
and adjust preferences

. DM can concentrate on interesting solutions
. computationally less costly
Hybrids combining a posteriori and interactive methods



Pareto Navigator
Eskelinen et al., OR Spectrum (2010)

Background & motivation
— | Learning phase Il Decision phase
— Challenges of computationally expensive problems

Pareto optimal set = actual PO set
Learning-oriented interactive method

Hybrid method: first a posteriori and then
Interactive method (assume convexity)
. relatively small) set of Pareto optimal solutions

. polyhedral approximation of PO set in objective
space — approximated PO set

Convenient and real-time navigation
— Preference information: reference point
— Project to actual PO set

Instead of approximating objective functions
we directly approximate PO set
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