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Problems with Multiple Criteria

s Different features
sOne decision maker

(DM) – several DMs
s Deterministic –

stochastic
s Continuous – discrete
s Nonlinear – linear
ČNonlinear multiobjective

optimization



Modelling

sModelling + simulation not
enough alone!

sReliable models required for
optimization

sOptimization enables taking
full advantage of high-quality
models

sChallenging to combine
different models

Phenomenon/
Application

Mathematical
model

Numerical
model

Computational
model

Simulation with
computers

Vali-
dation

Optimization



Nonlinear Multiobjective
Optimization

sMost real-life problems have several conflicting objectives
to be considered simultaneously and they may be nonlinear
depending on variables

sMultiobjective optimization
å Formulating each relevant aspect as an objective function
å Typically easier than to try to form a single objective and measure

all relevant points of view e.g. in money
å Reveals true nature of problem without simplifications and real

interrelationships between the objective functions
å Can make the problem computationally easier to solve

The feasible region may turn out to be empty -> minimize constraint
violations



Problem

fi: SR = objective function
k (² 2) = number of

(conflicting) objective
functions

x = decision vector (of n
decision variables xi)

S Ë Rn = feasible region
formed by constraint
functions and

``minimize´´ = minimize the
objective functions
simultaneously

some constraint/objective
functions is nonlinear

We consider multiobjective optimization problems

where



Concepts
s S consists of linear, nonlinear and/or box

constraints for the variables
sWe denote objective function values by zi = fi(x)
s z = (z1,…, zk) is an objective vector
s Z Ë Rk denotes the image of S; feasible

objective region
Thus z Í Z

Definition: If all functions are linear, problem is
linear (MOLP).  If some functions are nonlinear,
we have a nonlinear multiobjective optimization
problem. Problem is nondifferentiable if some
functions are nondifferentiable and convex if all
objectives and S are convex



Optimality
sContradiction and possible incommensurability Ý
sx*Í S is Pareto optimal (PO) if there does not exist

another xÍS such that fi(x) ¢ fi(x*) for all i=1,…,k and
fj(x) < fj(x*) for at least one j. Objective vector z*=
f(x*)ÍZ is Pareto optimal if x* is
i.e. (z* - Rk

+\{0}) Æ Z = Å,
that is, (z* - Rk

+) Æ Z = z*.
sPO solutions form a (possibly

nonconvex and disconnected) PO set
sx*Í S is weakly PO if there does not exist another xÍ S

such that fi(x) < fi(x*) for all i=1,…,k
i.e. (z* - int Rk

+) Æ Z = Å.
sProperly PO: unbounded trade-offs are

not allowed. Weak PO È PO È proper PO



More
¸ Ranges of objective function values in PO set

Ideal objective vector z* of individual optima
Utopian objective vector z** (strictly better)
Nadir objective vector znad (estimated)

¸ Decision maker (DM) can express
preferences, is responsible for final solution

¸ Analyst is responsible for mathematical side
¸ Help DM in finding most preferred (PO) solution
¸ Solution = best possible compromise
¸ We need preference information from DM
¸ Objective vector z dominates objective

vector y if zi ¢ yi for all i =1,…,k and zj < yj
for at least one j

¸ Thus, Pareto optimal solutions are not
dominated by any other feasible solution



Local and Global Optimality
s Paying attention to the Pareto optimal set and

forgetting other solutions is acceptable only if
we know that no unexpressed or
approximated objective functions are
involved!

s Assuming DM is rational and problem
correctly specified, final solution is always PO

s A point x*Í S is locally Pareto optimal if it is
Pareto optimal in some environment of x*

s Global Pareto optimality Ý local Pareto
optimality

s Local PO Ý global PO, if S convex, fi:s
quasiconvex with at least one strictly
quasiconvex fi



More Concepts
sValue function U:RkR may represent preferences
sIf U(z1) > U(z2) then the DM prefers z1 to z2. If U(z1)

= U(z2) then z1 and z2 are equally good (indifferent)
sU is assumed to be strongly decreasing = less is

preferred to more. Implicit U is often assumed

sDecision making can be thought of being based on
either value maximization or satisficing

sAn objective vector containing the aspiration levels ži
of the DM is called a reference point žÍRk



Results
sSawaragi, Nakayama, Tanino: Pareto

optimal solution(s) exist if
å the objective functions are lower

semicontinuous and
å the feasible region is nonempty and

compact

sKarush-Kuhn-Tucker optimality
conditions can be formed as a natural
extension to single objective
optimization for both differentiable and
nondifferentiable problems



Trading off
sMoving from one PO solution to another = trading off
sDefinition: Given x1 and x2 Í S, the ratio of change

between fi and fj is

sLij is a partial trade-off if fl(x1) = fl(x2) for all l=1,…,k,
l ¸i,j. If fl(x1) ¸ fl(x2) for at least one l and l ¸ i,j, then
Lij is a total trade-off

sLet d* be a feasible direction from x* Í S.  The total
trade-off rate along the direction d* is

sIf fl(x*+ad*) = fl(x*) " l ¸i,j and for all 0 ¢a¢a*, then lij
is a partial trade-off rate



Methods for Multiple Objectives
s Finding a Pareto optimal set or a representation of it

= vector optimization
s Typically methods use scalarization for converting

the problem into a single objective one
å Scalarization contains preference information &

original objective functions
å After scalarization, single objective optimizers are used

sMethods differ on what information is exchanged
between method ź DM as well as how problem is
scalarized

s Classification according to the role of the DM
• Not present, before, after or during solution process

s Based on the existence of a value function:
• ad hoc: U would not help
• non ad hoc: U helps

s Kaisa Miettinen: Nonlinear Multiobjective
Optimization, Kluwer (Springer), Boston, 1999



Scalarizing Functions

sScalarization = combine preferences and original
problem Ý scalarized single objective
subproblem
sResulting subproblem is solved with an

appropriate single objective optimization method
sObjective function is called scalarizing (or

scalarization) function
sDesirable properties

å Optimal solution is PO
å Any PO solution can be found



Criteria for Good Decision
Support System

sRecognizes and generates PO solutions
sHelps DM feel convinced that final solution

is the most preferred one or at least close
enough to that

sHelps DM to get a “holistic” view over PO
set

sDoes not require too much time from DM to
find final solution

sCommunication between DM and system
not too complicated

sProvides reliable information about
alternatives available



Four Classes of Methods
s How to support DM?
s Four types of methods (Hwang and Masud, 1979)
s No decision maker – some neutral compromise solution
s A priori methods: DM sets hopes and closest solution is found

å Expectations may be too optimistic or pessimistic
å Hard to express preferences without knowing the problem well

s A posteriori methods: generate representation of PO set
+ Gives information about variety of PO solutions
å Expensive, computationally demanding
å Difficult to represent the PO set if k > 2
o Example: evolutionary multiobjective optimization methods

s Interactive methods: iterative search process
+ Avoid difficulties above
+ Solution pattern is formed and repeated iteratively
+ Move around Pareto optimal set
+ What can we expect DMs to be able to say?
+ Goal: easiness of use
+ Cognitively valid approaches: classification and

reference point consisting of aspiration levels
s Further information: Kaisa Miettinen: Nonlinear Multiobjective

Optimization, Kluwer (Springer), 1999



Methods cont.
sNo-preference methods

å Meth. of Global Criterion
sA posteriori methods

å Weighting Method
å e-Constraint Method
å Hybrid Method
å Method of Weig. Metrics
å Achievement Scalarizing

Function Approach
sA priori methods

å Value Function Method
å Lexicographic Ordering
å Goal Programming

sInteractive methods
å Interactive Surrogate Worth

Trade-Off Method
å GDF Method
å Tchebycheff Method
å Reference Point Method
å GUESS Method
å Reference Direction

Approach
å Satisficing Trade-Off

Method
å Light Beam Search
å NIMBUS Method



Tree  Diagram of Methods
Miettinen (1999)



No-Preference Methods:
Method of Global Criterion (Yu, Zeleny)

sDistance between zÍ and Z is minimized by
Lp-metric:
if global ideal
objective vector
is known

s or by L¤-metric:

sDifferentiable form of the latter:



Method of Global Criterion cont.

? The choice of p
affects greatly the
solution

+ Solution of the Lp-
metric (p < ¤) is PO

º Solution of the L¤-
metric is weakly PO
and the problem has
at least one PO
solution

+ Simple method (no
special hopes are
set)



A Posteriori Methods

s Generate the PO set,
actually a representation
of it

s Present it to the DM
s Let the DM select one
– Computationally

expensive/difficult
– Hard to select from a set
– How to display the

alternatives (if k > 2)?



Weighting Method (Gass, Saaty)
ÂProblem

º Solution is weakly PO
+ Solution is PO if it is

unique or wi > 0 for all i
+ Convex problems: any

PO solution can be found
– Nonconvex problems:

some of the PO solutions
may fail to be found



Weighting Method cont.

– Weights are not easy to be understood
(correlation, nonlinear affects). Small change in
weights may change the solution dramatically

– Evenly distributed weights do not produce an
evenly distributed representation of the PO set



e-Constraint Method (Haimes et al)

s Problem

º The solution is weakly Pareto optimal
+ x* is PO iff it is a solution when ej = fj(x*)

(i=1,…,k, j¸l) for all objectives to be minimized
+ A unique solution is PO
+ Any PO solution can be found with some effort
- There may be difficulties in specifying upper

bounds



Trade-Off Information

s Let the feasible region be of the form
S = {x ÍRn | g(x) = (g1(x),…, gm(x)) T ¢ 0}

s Lagrange function of the e-constraint
problem is

s Under certain assumptions the coefficients
lj= llj are (partial or total) trade-off rates



Method of Weighted Metrics (Zeleny)

s Weighted metric formulations are



Method of Weighted Metrics cont.
+ If the solution is unique or the weights are positive,

the solution of Lp-metric (p<¤) is PO
+ For positive weights, the solution of L¤-metric is

weakly PO and there exists at least one PO solution
+ Any PO solution can be found with the L¤-metric

with positive weights if the reference point is
utopian but some of the solutions may be weakly PO

- All the PO solutions may not be found with p<¤
s

where r>0. This generates properly PO solutions
and any properly PO solution can be found



Achievement Functions cont.
(Wierzbicki)

s Example of order-representing functions:

where w is some fixed positive weighting vector
s Example of order-approximating functions:

where w is as above and r>0 sufficiently small.
+ The DM can obtain any arbitrary (weakly) PO

solution by moving the reference point only



Achievement Scalar. Fun. cont.

sSolution is Pareto optimal
sAny properly Pareto optimal solution can be found



Two Worlds: MCDM and EMO

Multiple criteria decision
making
å Role of DM and decision

support emphasized
å Role of preference

information important
å Different types of methods -

interactive ones widely
developed

å Solid theoretical background
(we can prove Pareto
optimality etc.)

å Scalarization combining
objective and preferences into
real-valued functions

Evolutionary multiobjective
optimization (EMO)

åIdea to approximate the set of Pareto
optimal solutions

åCriteria: minimize distance to real
PO set and maximize diversity of
approximation

åNot too much emphasis on DM’s
preferences until recently

åCannot guarantee actual optimality
åE.g. nonconvexity and discontinuity

cause no difficulties
åBackground in applications
åMany benchmark problems for

testing goodness of methods (to
measure quality of approximation
generated) + performance criteria

åTerminology: bi-multi-many
åNondominated = PO in a subset



EMO
¸ Evolutionary algorithms: common metaheuristics
¸ Work well for mathematically difficult problems (no

assumptions)
¸ Population-based approaches
¸ Population of solutions is manipulated with

operations (selection, crossover, mutation) and the
population approximates the PO set

¸ Many different EMO methods exist
¸ Problems

– Diversity preserving mechanisms
– Getting close to really PO solutions

¸ On the other hand
– Computational effort is wasted in finding undesired solutions
– Many solutions are presented to DM who can be unable to

compare and find most preferred among them when k > 2
Many EMO methods do not work well when k>2 or 3
Combine ideas of MCDM and EMO methods



EMO cont.

s Population-based methods
å Variables can be coded indifferent ways
å Repeated for generations
å At every generation, generates a set of solutions

s VEGA, RWGA, MOGA, NSGA, NSGA-II,
DPGA, SPEA-2 etc.
å Work best when k=2

s Goals: maintaining diversity and guaranteeing
Pareto optimality – how to measure?

s Special operators have been introduced
s Typically tested with benchmark problems

with known PO sets
s For k>3: MOEA/D, NSGA-III, RVEA etc.



A Priori Methods

s DM specifies hopes,
preferences, opinions

- DM does not
necessarily know how
realistic hopes are
(expectations may be
too high)

Value Function
Method (Keeney,

Raiffa)
Đ Problem



Lexicographic Ordering
sThe DM must specify an absolute order of

importance for objectives, i.e., fi >>> fi+1>>> ….
sIf the most important objective has a unique

solution, stop. Otherwise, optimize the second most
important objective such that the most important
objective maintains its optimal value etc.

+ The solution is Pareto optimal.
+ Some people make decisions successively.
- Difficulty: specify the absolute order of importance.
- The method is robust. The less important objectives

have very little chances to affect the final solution
- Trading off is impossible



Interactive Methods
sMost developed class of methods
s A solution pattern is formed and repeated iteratively
s DM directs the solution process, i.e. movement around PO set
s DM needs time and interest for co-operation
s Only some PO points (those that are interesting to the DM)

are generated
s DM is not overloaded with information
s DM can learn: specify and correct preferences and selections

as the solution process continues
s DM has more confidence in the final solution
s Important aspects

å what is asked – what can we expect DMs to be able to say?
å what is told – goal: easiness of use
å how the problem is scalarized

s Psychological convergence!



Interactive Methods, cont.

s DM is assumed to have knowledge about the problem in
question, no deep understanding of optimization or its theory

s Solution process is iterative
s Role of DM important

å Final solution = best possible, i.e., most preferred PO solution
å DM is responsible for the final solution

s DM should understand how to use method
å Information asked and given must be understandable

s Goal: easiness of use
å no difficult questions (like cognitive mapping)
å possibility to change one’s mind, i.e. enable learning



Interactive Methods, cont.

üIn each iteration, the DM is shown Pareto optimal
solutions and asked to specify new preference
information to generate more satisfactory new
Pareto optimal solution(s)
üThus, DM inþuences from which part of the Pareto

optimal set solutions are considered
üDM obtains

ü new information and insight about the interdependencies
among objective functions

ü understanding of the feasibility of preferences
üNew knowledge obtained may affect preferences,

leading to solutions which were not previously
considered
üUser interface plays an important role



Core Structure Ojalehto et al, COAP (2014)

1. Initialize solution process, e.g., calculate
ideal and nadir objective vectors

2. Solve a method-speciýc subproblem to
generate an initial Pareto optimal solution as
a current solution

3. Ask the DM to provide preference
information related to the current solution

4. Generate new solution(s) based on the
preference information by solving
appropriate subproblem(s)

5. Ask the DM to select the best solution of the
previously generated solutions and denote it
as the current solution

6. If current solution is satisfactory, stop.
Otherwise continue from step 3



Examples of Preference
Information

× Selecting desired or undesired from a sample of
PO solutions

× Pairwise comparison
× Desirable values (->reference point) or ranges for

objective functions
× Classify objectives (improvement possible by

allowing impairment)
× Opinion of marginal rates of substitution
× Desirability of trade-offs
Different DMs prefer different formats or want to
change the format – need different methods
• Luque et al., OR Spectrum (2011), Ruiz et al,

Annals of OR (2012)



Tchebycheff Method (Steuer)
sIdea: Interactive weighting space reduction method.

Different solutions are generated with well dispersed
weights. The weight space is reduced in the
neighbourhood of the best solution

sAssumptions: Utopian objective vector is available
sWeighted distance (Tchebycheff metric) between the

utopian objective vector and Z is minimized:

sIt guarantees Pareto optimality and any Pareto
optimal solution can be found



Tchebycheff Method cont.

sAt first, weights between [0,1] are generated.
sIteratively, the upper and lower bounds of the

weighting space are tightened.
sAlgorithm
1) Specify number of alternatives P and number of

iterations H. Construct zÍÍ. Set h=1.
2) Form the current weighting vector space and

generate 2P dispersed weighting vectors.
3) Solve the problem for each of the 2P weights.
4) Present the P most different of the objective

vectors and let the DM choose the most preferred.
5) If h=H, stop. Otherwise, gather information for

reducing the weight space, set h=h+1 and go to 2).



Tchebycheff Method cont.
sNon ad hoc method
+ All the DM has to do is to compare several Pareto

optimal objective vectors and select the most
preferred one.

! The ease of the comparison depends on P and k.
- The discarded parts of the weighting vector space

cannot be restored if the DM changes her/his mind.
- A great deal of calculation is needed at each

iteration and many of the results are discarded.

+ Parallel computing can be utilized.



Reference Point Method (Wierzbicki)
s Idea: Direct the search by reference points

representing desirable values for the
objectives and generate new alternatives by
shifting the reference point

s Reference point is projected onto PO set with
achievement scalarizing function

s Solution is properly PO



Reference Point Method Algorithm

s No specific assumptions
s Algorithm:
1) Present information to the DM. Set h=1.
2) Ask the DM to specify a reference point žh.
3) Minimize ach. function. Present zh to the DM.
4) Calculate k other solutions with reference points

where dh=||žh - zh|| and ei is the ith unit vector.
5) If the DM can select the final solution, stop.

Otherwise, ask the DM to specify žh+1. Set h=h+1
and go to 3).



Reference Point Method cont.

sAd hoc method (or both)
+ Easy for the DM to understand: (s)he has to

specify aspiration levels and compare objective
vectors.

+ For nondifferentiable problems, as well
+ No consistency required
- Easiness of comparison depends on the problem
- No clear strategy to produce the final solution



Satisficing Trade-Off Method
(Nakayama et al)

s Idea: To classify the objective functions:
å functions to be improved
å acceptable functions
å functions whose values can be relaxed

sAssumptions
å functions are twice continuously differentiable

å trade-off information is available in the KKT multipliers

sAspiration levels from the DM, upper bounds from the
KKT multipliers

s Satisficing decision making is emphasized



Satisficing Trade-Off Method cont.
Č Problem

where žh > zÍÍ and r>0. Solution weakly
or properly PO, respectively

sAny (properly) PO solution can be found
s Partial trade-off rate information can be

obtained from optimal KKT multipliers
of the differentiable counterpart problem



Satisficing Trade-Off Algorithm

1) Calculate zÍÍ and get a starting solution.
2) Ask the DM to classify the objective functions

into the three classes. If no improvements are
desired, stop.

3) If trade-off rates are not available, ask the DM to
specify aspiration levels and upper bounds.
Otherwise, ask the DM to specify aspiration
levels. Utilize automatic trade-off in specifying
the upper bounds for the functions to be relaxed.
Let the DM modify the calculated levels, if
necessary.

4) Solve the problem. Go to 2).



Background for NIMBUSÑ

s DM should understand how to use method
s Solution = best possible compromise
s DM is responsible for the final solution
s Difficult to present the Pareto optimal set,

expectations may be too high
s Interactive approach avoids these difficulties
s Move around Pareto optimal set
s How can we support the learning process?
s DM should be able to direct the solution process
s Goal: easiness of use Ý no difficult questions &

possibility to change one’s mind
s Dealing with objective function values is

understandable and straightforward



Synchronous NIMBUSÑ

Miettinen, Mäkelä, EJOR (2006)
¸ Scalarization is important: contains preference information
¸ But scalarizations based on same input give different

solutions (Miettinen, Mäkelä, OR Spec (2002))

¸ Which is the best? Ý Synchronous NIMBUSÑ

¸ 1-4 scalarized problem(s) formed to obtain different PO
solutions

¸ Show them to the DM & let her/him choose the best
¸ DM can see how realistic hopes were and can adjust them
¸ Versatile possibilities to direct solution process

¸ Besides classification, intermediate solutions between
PO solutions can be generated

¸ Classification and comparison of alternatives are used in
the extent the DM desires

¸ DM can learn during the iterative solution process and only
PO solutions that are interesting to her/him are generated



Classification in NIMBUS

s DM directs the search by classification: Classification of
objective functions into up to 5 classes

s Classification: DM indicates desirable changes in the
current PO objective function values fi(xh)

s Classes: functions fi whose values
å should be decreased (iÍI<)
å should be decreased till some aspiration level ži

h < fi(xh) (iÍI¢)
å are satisfactory at the moment (iÍI=)
å are allowed to increase up till some upper bound ei

h>fi(xh) (iÍI>)
å are allowed to change freely (iÍIß)

s DM must be willing to give up something
s Miettinen, Mäkelä: Optim (1995), JORS (1999), Comp&OR

(2000), EJOR (2006)



NIMBUSÑ Method cont.
sSolve subproblem

where r > 0; appropriate single objective optimizer
sSolution properly PO. Any PO solution can be

found
sSolution satisfies desires as well as possible –

feedback of tradeoffs
sPossible to save interesting solutions and return to

them later
sWe have 3 more subproblems to get more solutions



Other Subproblems

sClassification implies reference point but not vice
versa

sWe use reference point based subproblems
sComponents of reference point are obtained from

classification information
å I< : corresponding component of ideal objective vector
å I¢ : aspiration level specified by the DM
å I = : current objective function valuer
å I² : upper bound specified by the DM
å I> : corresponding component of nadir objective vector



s Intermediate solutions between xh and x’h: f(xh+tjdh), where dh=
xh’- xh and tj=j/(P+1)

s Search iteratively around the PO set until DM does not want to
improve or impair any objective

s Ad hoc method
+ Versatile possibilities for the DM: classification, comparison,

extracting undesirable solutions
+ Does not depend entirely on how well the DM manages in

classification. (S)he can e.g. specify loose upper bounds and
get intermediate solutions

+ Works for nondifferentiable/nonconvex problems
+ No consistency is required – learning-oriented method

NIMBUS Method - Remarks



1) Choose starting solution and project it to be PO.
2) Ask DM to classify the objectives and to specify

related parameters. Solve 1-4 subproblems.
3) Present different solutions to DM.
4) If DM wants to save solutions, update database.
5) If DM does not want to see intermediate solutions,

go to 7). Otherwise, ask DM to select the end points
and the number of solutions.

6) Generate and project intermediate solutions. Go to
3).

7) Ask DM to choose the most preferred solution. If
DM wants to continue, go to 2). Otherwise, stop.

NIMBUSÑ Algorithm



sWWW-NIMBUS® http://nimbus.it.jyu.fi/
å The first, unique interactive optimization system on the

Internet since 1995
å Centralized computing & distributed interface
å Latest version always available
å Graphical user-interface via WWW
å Available & free for any academic Internet user
å Tutorial and online help

sIND-NIMBUSÑ http://ind-nimbus.it.jyu.fi/
å For MS-Windows and Linux operating systems
å Can be connected with different modelling and simulation

tools like GAMS, Matlab, GPS-X, APROS
å Different  local and global solvers and their hybrids
å User can change solver and its parameters
å E.g. wide applicability of single-objective evolutionary

approaches available (Miettinen, Materials & Manuf.
Processes 2007)

WWW-NIMBUS® and IND-NIMBUSÑ









IND-NIMBUSÑ Views
Objective
function
values and
classification

Numerical
classification
boundaries

Initial PO
solution



IND-NIMBUSÑ Views

NIMBUS
classification
by clicking
objective bar

New
solutions
calculated
with a play
button

New PO
solutions

Initial PO
solution



Computational Challenges

of complex simulation-based optimization
We need tools for handling
¸ Computational cost

– Objective and constraint functions depend on output of
simulation models – may be time-consuming

¸ Black-box models
– Global optimization needed -> computational cost

¸ One can train a computationally inexpensive
surrogate (metamodel) to each expensive function
but training is not straightforward and there are
alternatives

¸ EMO methods for computationally expensive:
¸ ParEGO, SMS-EGO, K-RVEA



Hybrid Methods
¸ Put together ideas of different methods to form new

ones
¸ Aim: at the same time

¸ combine strengths and benefits
¸ avoid weaknesses

¸ A posteriori methods
¸ information of whole PO set – possibilities and limitations

¸ Interactive methods
¸ DM can learn about the problem, its interdependencies

and adjust preferences
¸ DM can concentrate on interesting solutions
¸ computationally less costly

¸ Hybrids combining a posteriori and interactive methods



Pareto Navigator
Eskelinen et al., OR Spectrum (2010)

¸ Background & motivation
– I Learning phase II Decision phase
– Challenges of computationally expensive problems

¸ Pareto optimal set = actual PO set
¸ Learning-oriented interactive method
¸ Hybrid method: first a posteriori and then

interactive method (assume convexity)
¸ relatively small) set of Pareto optimal solutions
¸ polyhedral approximation of PO set in objective

space – approximated  PO set

¸ Convenient and real-time navigation
– Preference information: reference point
– Project to actual PO set

¸ Instead of approximating objective functions
we directly approximate PO set



Pareto Navigator View
Based on the
information
given, new
approximated
PO solutions
are generated

to project
them to real
PO solutions

or as a
starting point
for new
navigation

Approximated
solutions can
be used




































