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The challenge of Decision Aiding

 Decision Aiding aims at giving the Decision Maker (DM) 

a recommendation concerning a set of objects A

evaluated on multiple dimensions

 objects = alternatives, options, actions, solutions,…

 dimensions = voters, criteria, probabilistic gains/losses, attributes,…

 The only objective information stemming from the statement

of a decision problem is the dominance relation in set A

(partial weak order)

 The challenge: aggregation of evaluations on multiple dimensions
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Enriching dominance relation – preference modeling

 One can „enrich” the dominance relation, using preference information

elicited by the DM

 Preference information is an input to learn/build a preference model 

that aggregates the vector evaluations of objects

 The preference model induces a preference relation in set A, richer

than the dominance relation

 A proper exploitation of the preference relation in A leads

to a recommendation in terms of:

 Ordinal classification (or sorting, to pre-defined & ordered classes)

 Ranking (ordering of alternatives from the best to the worst)

 Choice (or multiobjective optimization; search of the best solution)
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Indirect elicitation of preference information by the DM

 Examples of decisions concern some objects relatively well known

to the DM, i.e. reference objects :

• pairwise comparisons of objects

• assignment of objects to classes

• comparisons of pairs of objects wrt intensity of preference

 Indirect elicitation is concordant with:

 „Posterior rationality” principle by John March (1978):

emphasizes the discovery of intentions as an interpretation 

of actions, rather than as a priori position

 AI and Machine Learning : „Learning from examples”

 OR : „Analytics - the scientific process of transforming data into 

insight for making better decisions”

D
A
T
A



12

Aggregation of multiple criteria evaluations

 Three families of preference modelling (aggregation) methods:

 Multiple Attribute Utility Theory (MAUT) using a value function,

e.g. Choquet/Sugeno integral

 Outranking methods using an outranking relation S

a S b = “a is at least as good as b”

 Decision rule approach using a set of „if…, then…” decision rules

 Decision rule model is the most general of all three

R.Słowiński, S.Greco, B.Matarazzo: Axiomatization of utility, outranking and decision-rule 

preference models for multiple-criteria classification problems under partial inconsistency 

with the dominance principle, Control and Cybernetics, 31 (2002) no.4, 1005-1035

    , 
1 


n

i ii agkaU      , 
1 


n

i ii aguaU



13

Syntax of decision rules

if xq1q1rq1 and xq2q2rq2 and … xqpqprqp, then x  class t or better

if xq1q1rq1 and xq2q2rq2 and … xqpqprqp, then x  class t or worse

if (x q1
h(q1) y) and (x q2

h(q2) y) and ... (x qp
h(qp) y), then xSy

if (x q1
h(q1) y) and (x q2

h(q2) y) and ... (x qp
h(qp) y), then xScy

S.Greco, B.Matarazzo, R.Słowiński: Decision rule approach. Chapter 13 [in]: S.Greco
M.Ehrgott, and J.Figueira (eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, 
2nd edition, Operations Research & Management Science 233, Springer, New York, 2016, pp. 

497-552.

ordinal
classifi-
cation

choice
ranking
cardinal
criteria

pair of objects x,y evaluated on criterion g1

if xg1g1rq1 & yg1g1r’q1 & … xgpgprgp & ygpgpr’gp, then xSy

if xg1g1rq1 & yg1g1r’q1 & … xgpgprgp & ygpgpr’gp, then xScy

choice
ranking
ordinal
criteria
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Indirect preference information – example of technical diagnostics

 176 buses (objects)

 8 symptoms (attributes)

 Decision = technical state:

3 – good state (in use)

2 – minor repair

1 – major repair (out of use)

 Aggregation = finding 

relationships between 

symptoms & technical state

 The model explains 

expert’s decisions and 

supports diagnosis 

of new buses



Indirect preference information – „Thierry’s choice”  
(data from [Bouyssou et al. 2006])

 reference actions ranked by the DM: 11  3  13  9  14

Pairwise 
Comparison 
Table (PCT):

S = 
Sc = not 

The model 
explains DM’s 
preferences 
&  supports 
comparison 
of new cars
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Representation of preferences

 Scoring function:                               or

like in MAUT, Discriminant Analysis, Logistic Regression or Perceptron,

e.g. U(a) = 0.21gSpeed(a) + 0.03gCompr(a) + … + 0.18gPower(a) = 0.45

    


n

i ii agkaU
1

     


n

i ii aguaU
1

U(a)

State 1 0.76 1.0State 3State 20.340.0
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Representation of preferences

 Scoring function:                               or

like in MAUT, Discriminant Analysis, Logistic Regression or Perceptron,

e.g. U(a) = 0.21gSpeed(a) + 0.03gCompr(a) + … + 0.18gPower(a) = 0.45

 Decision rules or trees,

like in Artificial Intelligence, Data Minining or Learning from Examples,

e.g. if OilCons  1  & WinterGasCons  25,  then State  2

if MaxSpeed  85  & WinterGasCons  25,  then State  2

 Natural interpretability and great ability of representation

    


n

i ii agkaU
1

     


n

i ii aguaU
1

U(a)

State 1 0.76 1.0State 3State 20.340.0



1919

Dataset with decision examples concerning ordinal classification

Student Mathematics Physics Literature Philosophy Overall_Eval.

S1 good medium bad medium bad

S2 medium medium bad bad medium

S3 medium medium medium bad medium

S4 good good medium medium medium

S5 good good medium medium good

S6 good medium good good good

S7 good good good medium good

S8 bad bad bad bad bad

S9 bad bad medium bad bad

S10 good medium medium bad medium
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S7: 0.80 S4: 0.76 S1: 0.33
S6: 0.77   S10: 0.48   S2: 0.22
S5: 0.76 S3: 0.42     S9: 0.20

S8: 0.00      


n

i ii aguaU
1

value function

bad

bad

bad

bad

medium

mediummedium

medium

good

good good

good

U

bad 0.76 1.0goodmedium0.340.0

UTADIS
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Inconsistent decision examples concerning ordinal classification

Student Mathematics Physics Literature Philosophy Overall_Eval.

S1 good medium bad medium bad

S2 medium medium bad bad medium

S3 medium medium medium bad medium

S4 good good medium medium medium

S5 good good medium medium good

S6 good medium good good good

S7 good good good medium good

S8 bad bad bad bad bad

S9 bad bad medium bad bad

S10 good medium medium bad medium
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Profiles:

Bad-Medium
BM:
Math=medium
Phys=medium
Lit=bad
Philo=medium

Medium-Good
MG:
Math=good
Phys=medium
Lit=good
Philo=medium

Thresholds:

Indifference=0
Preference=1
Veto=2

Weights:

Math=0.35
Phys=0.3
Lit=0.15
Philo=0.25

bad=1 medium=2 good=3

Class „good” = {S4, S5, S6, S7}
Class „medium” = {S1, S2, S3, S10}
Class „bad” = {S8, S9}

BM MG

outranking relation
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Decision tree (C4.5)
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Decision rules (dominance relation in premise and conclusion)

If Lit  good, then student  good {S6,S7}

If Phys  medium & Lit  medium, then student  medium

{S3,S4,S5,S6,S7,S10}

If Phys  good & Lit  medium, then student is medium or good

{S4,S5}

If Math  medium & Lit  bad, then student is bad or medium

{S1,S2}

If Lit  bad, then student  medium {S1,S2,S8}

If Philo  bad, then student  medium {S2,S3,S8,S9,S10}

If Phys  bad, then student  bad {S8,S9}

 „People make decisions by searching for rules that provide good

justification of their choices”  (Slovic, 1975)
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Why should we seek for rules rather than for a real-valued function ?

 Description of complex phenomena by recursive estimation techniques

applied on historical data  (Int. J. Environment and Pollution, vol.12, no.2/3, 1999)

 The dependence of the size of the mouth of a river in month k, 

represented by the relative tidal energy (RTEk), from RTEk-1, 

the river flow (Fk-1), the onshore wind (Wk-1) and the crude monthly

count of storm events (Sk) (Elford et al. 1999; Murray Mouth, Australia):

where the exponent 2.4 was tuned by „trial and error”, coefficients

A1, A2, A3, A4 were computed using a recursive least squares (RLS), 

and k is the model error

 
kk

k

k

k

.
k

kk SA
RTE

W
A

RTE

F
ARTEARTE 
















 4

1

1
3

1

42

1
211

1818

200
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 Description of complex phenomena by recursive estimation techniques

applied on historical data (Int. J. Environment and Pollution, vol.12, no.2/3, 1999)

 The impact of urban stormwater on the quality of the receiving water

(Rossi, Słowiński, Susmaga 1999; Lausanne and Genève).

 Example of rule induced from empirical observation of some sites:

If the site is of type 2 (residential), and total rainfall is up to 8 mm, 

and max intensity of rain is between 2.7 and 11.2 mm/h, 

then total mass of suspended solids is < 2.2 kg/ha

 The rule is more expressive and involves heterogeneous data: 

nominal, qualitative and quantitative

Why should we seek for rules rather than for a real-valued function ?
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Rough set concept
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Inconsistencies in data – Rough Set Theory

 Zdzisław Pawlak (1926–2006)

badmediumbadbadS8

badmediumbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodmediumS4

mediummediumgoodmediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiteraturePhysicsMathematicsStudent
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Inconsistencies in data – Rough Set Theory

 The granules of indiscernible objects are used to approximate classes

badmediumbadbadS8

badmediumbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodmediumS4

mediummediumgoodmediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student
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Inconsistencies in data – Rough Set Theory

 Lower approximation of class „good”

badmediumbadbadS8

badmediumbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodmediumS4

mediummediumgoodmediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student

L
o
w

e
r 

A
p
p
ro

x
im

a
ti
o
n
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Inconsistencies in data – Rough Set Theory

 Lower and upper approximation of class „good”

badmediumbadbadS8

badmediumbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodmediumS4

mediummediumgoodmediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student

L
o
w

e
r 

A
p
p
ro

x
im

a
ti
o
n

U
p
p
e
r 

A
p
p
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x
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a
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o
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IRSA – rules induced from rough approximations

 Certain decision rule supported by objects from lower approximation

of class „good” (discriminant rule)

If Lit=good,  then Student is certainly good

{S5,S6}

 Possible decision rule supported by objects from upper approximation

of class „good” (partly discriminant rule)

If Phys=good,  then Student is possibly good

{S3,S4,S6}

 Approximate decision rule supported by objects from the boundary

of class „medium” or „good”

If Phys=good & Lit=medium,  then Student is medium or good

{S3,S4}
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What is missing to Indiscernibility-based Rough Set Approach?

 Classical rough set approach does not detect inconsistency w.r.t. 

dominance (Pareto principle) – a basic principle in decision making

badmediumbadbadS8

badbadbadbadS7

goodgoodgoodgoodS6

goodgoodmediumgoodS5

goodmediumgoodmediumS4

mediummediumgoodmediumS3

mediumbadmediummediumS2

badbadmediumgoodS1

Overall classLiterature (L)Physics (Ph)Mathematics (M)Student
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Rules induced from indiscernibility-based rough approximations

 Certain decision rules based on indiscernibility are inconsistent

with respect to the dominance principle (monotonicity constraints):

If Math=good &  Lit=bad,  then Student is certainly bad {S1}

If Math=medium &  Lit=bad,  then Student is certainly medium {S2}
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Dominance-based Rough Set Approach: DRSA
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Classical Rough Set Theory



Indiscernibility principle

If x and y are indiscernible with respect to all relevant attributes, 

then x should classified to the same class as y

Dominace-based Rough Set Theory



Dominance principle (monotonicity constraints)

If x is at least as good as y with respect to all relevant criteria,

then x should be classified at least as good as y

S.Greco, B.Matarazzo, R.Słowiński: Rough sets theory for multicriteria decision analysis. 
European J. of Operational Research, 129 (2001) no.1, 1-47

Classical Rough Set Theory vs. Dominance-based Rough Set Theory
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Dominance principle as monotonicity constraint principle

 Dominance-based Rough Set Approach (DRSA) permits representation 

and analysis of all phenomena involving monotonicity relationship

between specific measures or perceptions, e.g.

„the more a tomato is red, and the more it is soft,  the more it is ripe” 

„the older the car, the more likely its breakdown” *

or

„the more similar are the causes, 

the more similar are the effects one can expect”**

*S.Greco, M.Inuiguchi, R.Słowiński: Fuzzy rough sets and multiple-premise gradual decision rules. 
International Journal of Approximate Reasoning, 41 (2005) 179-211

**S.Greco, B.Matarazzo, R.Słowiński: Case-based reasoning using gradual rules induced from 
dominance-based rough approximations. [In]: G.Wang et al. (eds.), Rough Sets and 
Knowledge Technology (RSKT 2008). LNCS 5009, Springer, Berlin, 2008, pp. 268-275.



Monotonicity and induction

 „The procedure of induction consists in accepting as true the simplest 

law that can be reconciled with our experiences”

(L. Wittgenstein, Tractatus Logico-Philosophicus, 6.363)

 This simplest law is just monotonicity and, therefore, inductive discovery

of rules can be seen as a specific way of dealing with monotonicity

 Dominance-based Rough Set concept permits data structuring wrt

possible violation of dominance (lower appx,  upper appx,  boundary)

prior to rule induction

R.Słowiński, S.Greco, B.Matarazzo: Rough Sets in Decision Making. [In]: R.A.Meyer (ed.): 

Encyclopedia of Complexity and Systems Science, Springer, NY, 2009, pp. 7753-7786.
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Decision rule approach to multiple criteria classification
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Dominance-based Rough Set Approach (DRSA)

 In order to handle monotonic dependency between conditions and 

decision (class assignment):

– upward union of classes, t=2,...,m („at least” class Clt)

– downward union of classes, t=1,...,m-1 („at most” class Clt)

 are positive and negative

dominance cones in decision space

reduced to single dimension


tt ClCl   and  


ts

st ClCl


 


ts

st ClCl


 

Cl6

Cl5

Cl4

Cl3

Cl2

Cl1

O
rd

e
re

d
c
la

s
s
e
s

 6544 Cl,Cl,ClCl 

 1233 Cl,Cl,ClCl 
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Dominance-based Rough Set Approach (DRSA)

 DP – dominance relation (partial preorder) in condition space, PC

 Granules of knowledge are dominance cones in condition space

(x)= {yU: yDPx} : P-dominating set (positive cone)

(x) = {yU: xDPy} :  P-dominated set (negative cone)

 Classification patterns to be discovered are functions representing

granules             , by granules


PD

   xDxD PP
   ,


PD


tt ClCl   ,



Dominance cones wrt object x – example  ( Cl1  Cl2  Cl3 )
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D+(x)

D(x)

(x)



Dominance cones wrt object x – example  ( Cl1  Cl2  Cl3 )
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(x)



Lower approximations of „at most Cl1” and „at least Cl2” 
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( Cl1  Cl2  Cl3 )



Lower approximations of „at most Cl2” and „at least Cl3”
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( Cl1  Cl2  Cl3 )
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Dominance-based Rough Set Approach vs. Classical RSA

Comparison of CRSA and DRSA

    : 
t P t

P Cl x U D x Cl        XxIUxXP P   :

   
Xx

P xIXP


 

 Classes:

   


 

tClx

Pt xDClP  

40

20

c1

c2
0 4020

a1

a20 40

40

20

20
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DRSA for multiple criteria classification

 Example of preference information about students:

 Examples of classification of S1 and S2 are inconsistent

Quality of approximation by {M,Ph,L} = 6/8 = 0.75

Student Mathematics (M) Physics (Ph) Literature (L) Overall class

S1 good medium bad bad

S2 medium medium bad medium

S3 medium medium medium medium

S4 good good medium good

S5 good medium good good

S6 good good good good

S7 bad bad bad bad

S8 bad bad medium bad
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DRSA for multiple criteria classification

 If we eliminate Literature, then more inconsistencies appear:

 Examples of classification of S1, S2, S3 and S5 are inconsistent

Student Mathematics (M) Physics (Ph) Literature (L) Overall class

S1 good medium bad bad

S2 medium medium bad medium

S3 medium medium medium medium

S4 good good medium good

S5 good medium good good

S6 good good good good

S7 bad bad bad bad

S8 bad bad medium bad
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DRSA for multiple criteria classification

 Elimination of Mathematics does not increase inconsistencies:

 Subset of criteria {Ph,L} is a reduct of {M,Ph,L}

Student Mathematics (M) Physics (Ph) Literature (L) Overall class

S1 good medium bad bad

S2 medium medium bad medium

S3 medium medium medium medium

S4 good good medium good

S5 good medium good good

S6 good good good good

S7 bad bad bad bad

S8 bad bad medium bad
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DRSA for multiple criteria classification

 Elimination of Physics also does not increase inconsistencies:

 Subset of criteria {M,L} is a reduct of {M,Ph,L}

 Intersection of reducts {M,L} and {Ph,L} gives the core {L}

Student Mathematics (M) Physics (Ph) Literature (L) Overall class

S1 good medium bad bad

S2 medium medium bad medium

S3 medium medium medium medium

S4 good good medium good

S5 good medium good good

S6 good good good good

S7 bad bad bad bad

S8 bad bad medium bad
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DRSA for multiple criteria classification

 Let us represent the students in condition space {M,L} :

 

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8
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 Dominance cones in condition space {M,L} :

 

 P={M,L}

   3S 3S PP xD:UxD 

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

   xD:UxD PP S3 3S 

DRSA for multiple criteria classification
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 Dominance cones in condition space {M,L} :

 

 P={M,L}

   4S 4S PP xD:UxD 

   xD:UxD PP S4 4S 

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

DRSA for multiple criteria classification
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 Dominance cones in condition space {M,L} :

 

 P={M,L}

   2S 2S PP xD:UxD 

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

   xD:UxD PP S2 2S 

DRSA for multiple criteria classification
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 Lower approximation of at least medium students:

 

 P={M,L}

      mediumPmedium ClxDUxClP :

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

DRSA for multiple criteria classification
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 Upper approximation of at least medium students:

 

 P={M,L}

       






mediumP

Clx

Pmedium ClxDUxxDClP

medium

:

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

DRSA for multiple criteria classification
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 Boundary region of at least medium students:

 

 P={M,L}

       mediummediummediumP ClPClPClBn

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

DRSA for multiple criteria classification
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 Lower approximation of at most bad students:

 

 P={M,L}

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

      badPbad ClxDUxClP :

DRSA for multiple criteria classification
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 Upper approximation of at most bad students:

 

 P={M,L}

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

       






badP

Clx

Pbad ClxDUxxDClP

bad

:

DRSA for multiple criteria classification
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 Boundary region of at most bad students:

 

 P={M,L}

         mediumPbadbadbadP ClBnClPClPClBn

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

DRSA for multiple criteria classification
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DRSA – properties

 Basic properties of rough approximations

,  for t=2,…,m

 Identity of boundaries , for t=2,…,m

 Quality of approximation of classification Cl={Clt, t=1,...m} by set PC

 Cl-reducts and Cl-core of PC

   ClPClClP ttt
 

    PREDPCORE ClCl 

   ClPClClP ttt
 

   ClPUClP tt



  1

   ClBnClBn tPtP



  1

 
 

 

U

ClBnU
m,...,t tP

P

 2


Clγ
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 Decision rules in terms of  {M,L} :

 

 D> - certain rule

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

If M  good & L  medium, then student  good

DRSA for multiple criteria classification
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 Decision rules in terms of  {M,L} :

 

 D> - certain rule

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

If M  medium & L  medium, then student  medium

DRSA for multiple criteria classification
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 Decision rules in terms of  {M,L} :

 

 D>< - approximate rule

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

If M  medium & L  bad, then student is bad or medium

DRSA for multiple criteria classification
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 Decision rules in terms of  {M,L} :

 

 D< - certain rule

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

If M  medium, then student  medium

DRSA for multiple criteria classification
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 Decision rules in terms of  {M,L} :

 

 D< - certain rule

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

If L  bad, then student  medium

DRSA for multiple criteria classification
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 Decision rules in terms of  {M,L} :

 

 D< - certain rule

bad

bad

medium

good

goodmedium

Mathematics

Literature good  medium  bad

S5,S6

S7 S2 S1

S4S3S8

If M  bad, then student  bad

DRSA for multiple criteria classification
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 Set of decision rules in terms of  {M, L} representing preferences:

If M  good & L  medium, then student  good {S4,S5,S6}

If M  medium & L  medium, then student  medium {S3,S4,S5,S6}

If M  medium & L  bad, then student is bad or medium {S1,S2}

If M  medium, then student  medium {S2,S3,S7,S8}

If L  bad, then student  medium {S1,S2,S7}

If M  bad, then student  bad {S7,S8}

DRSA for multiple criteria classification
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 Set of decision rules in terms of  {M,Ph,L} representing preferences:

If M  good & L  medium, then student  good {S4,S5,S6}

If M  medium & L  medium, then student  medium {S3,S4,S5,S6}

If M  medium & L  bad, then student is bad or medium {S1,S2}

If Ph  medium & L  medium then student  medium {S1,S2,S3,S7,S8}

If M  bad, then student  bad {S7,S8}

 The preference model involving all three criteria is more concise

DRSA for multiple criteria classification
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 New student to be evaluated

 Set of activated decision rules:

If M  medium & L  medium, then student  medium {S3,S4,S5,S6}

If M  medium, then student  medium {S2,S3,S7,S8}

 Set of non-activated decision rules:

If M  good & L  medium, then student  good {S4,S5,S6}

If M  medium & L  bad, then student is bad or medium {S1,S2}

If M  bad, then student  bad {S7,S8}

Using DRSA rules as a decision model

Student Mathematics Physics Literature

S9 medium medium good
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 Importance and interaction among criteria

 Quality of approximation of classification P(Cl) (PC) is a fuzzy measure

with the property of Choquet capacity

((Cl)=0, C(Cl)=r and  R(Cl)P(Cl)r for any RPC)

 Such measure can be used to calculate Shapley value or Benzhaf index, 

i.e., an average „contribution” of criterion q in all coalitions of criteria,

q{1,…,n}

 Fuzzy measure theory permits, moreover, to calculate

interaction indices for pairs (or larger subsets) of criteria

(Murofushi & Soneda, Grabisch or Roubens), 

i.e., an average „added value” resulting from putting together q and q’

in all coalitions of criteria,  q,q’{1,…,n}

DRSA for multiple criteria classification
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 Quality of approximation of classification of students

C(Cl)= [8-|{S1,S2}|]/8 = 0.75

DRSA for multiple criteria classification
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 Value-driven methods

 The preference model is a utility function U and a set of thresholds zt,  

t=1,…,p-1, on U, separating the decision classes Clt,  t=0,1,…,p

 A value of utility function U is calculated for each action aA

 e.g. aCl2,  dClp1

Comparison of decision rule preference model and utility function

Uz1 zp-2 zp-1z2


Cl1 Cl2 Clp-1 Clp

U[f1(a),…,fn(a)] U[f1(d),…,fn(d)]
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 ELECTRE TRI

 Decision classes Clt are caracterized by limit profiles bt,  t=0,1,…,p

 The preference model, i.e. outranking relation S, is constructed for 

each couple (a, bt),  for every aA and  bt, t=0,1,…,p

Comparison of decision rule preference model and outranking relation

f1

f2

f3


fn







b0 b1 bp-2 bp-1 bpb2


Cl1 Cl2 Clp-1 Clp

a d
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 ELECTRE TRI

 Decision classes Clt are caracterized by limit profiles bt,  t=0,1,…,p

 Compare action a successively to each profile bt,  t=p-1,…,1,0; 

if bt is the first profile such that aSbt, then aClt+1

 e.g. aCl1,  dClp1

Comparison of decision rule preference model and outranking relation

f1

f2

f3


fn







b0 b1 bp-2 bp-1 bpb2


Cl1 Cl2 Clp-1 Clp

a d

comparison of action a to profiles bt
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 Rule-based classification

 The preference model is a set of decision rules for unions ,  

t=2,…,p

 A decision rule compares an action profile to a partial profile using

a dominance relation

 e.g.  aCl2
>, because profile of a dominates partial profiles of r2 and r3

Comparison of decision rule preference model and outranking relation

a

Clt


e.g. for Cl2
>

f1

f2

f3


fn

r1 r3

r2



Important feature of DRSA

 DRSA exploits ordinal information only, and decision rules

do not convert ordinal information into numeric one

 „Si l’ordre apparaît quelque part dans la qualité, pourquoi

chercherions-nous à passer par l’intermédiaire du numbre?”

(G.Bachelard 1934)

(„If an order appears somewhere in quality, why should we like

to interprete this order through numerical values?” )

 Pareto-dominance can be replaced by Lorenz-dominance,

making decision rules more equitable and risk-averse
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 Dominance-based „if…, then…” decision rules are the only aggregation 

operators that:

 give account of most complex interactions among criteria,

 are non-compensatory,

 accept ordinal evaluation scales and do not convert ordinal 

evalautions into cardinal ones, 

 Rules identify values that drive DM’s decisions – each rule is a scenario 

of a causal relationship between evaluations on a subset of criteria 

and a comprehensive judgment 

R.Słowiński, S.Greco, B.Matarazzo: Axiomatization of utility, outranking and decision-rule 
preference models for multiple-criteria classification problems under partial inconsistency   
with the dominance principle, Control and Cybernetics, 31 (2002) no.4, 1005-1035

Preference modelling by dominance-based decision rules
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Classification with monotonic decision rules



Standard classification scheme

X 1 X 2 X 3 X 4 X 5

r
X

≥
2

r
X

≥
4 Recommendation is an

intersection of unions

of classes suggested by

covering rules

X 1 X 2 X 3 X 4 X 5

r
X

≥
2

r
X 4

imprecise suggestion of

covering rules

X 1 X 2 X 3 X 4 X 5

r
X 2

r
X

≥
4

contradictory suggestion

of covering rules

22
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Class

Class

Class

Only „at least” 
or „at most” rules

Overlapping „at least”
and „at most” rules

Disjoint „at least”
and „at most” rules

Application of decision rules to multiple criteria classification



 Let 11 ,…, kk , be the rules matching object x

 Rt(x)={j:  Cltj, j=1,…,k},    Rt (x)={j:  Cltj, j=1,…,k}

,       are sets of objects with property j, j, respectively,  j=1,…,k

 For classified object x, the score is calculated for each candidate class

Clt, t=1,...,m  

81

Application of decision rules to multiple criteria classification

      
t t t

score Cl ,x score Cl ,x score Cl ,x  

  ψ ψ  or  ,  1 ,  1
j s j q
Cl Cl s,q ,...,m j ,...,k    

 

 
 

 
t

xRj

j

xRj

tj

t

Cl

Cl

x,Clscore

t

t














2

  

 
 

   




xRj

j

xRj

j

xRj

jj

t

tt

tx,Clscore











2

 

j j
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 score+(Clt , x) can be interpreted as 

 score(Clt , x) can be interpreted as 

J.Błaszczyński, S.Greco, R.Słowiński: Multi-criteria classification – a new scheme for 
application of dominance-based decision rules. European J. Operational Research,
181 (2007) 1030-1044

J.Błaszczyński, R.Słowiński, M.Szeląg: Sequential covering rule induction algorithm 
for variable consistency rough set approaches. Information Sciences, 181 (2011)
987-1002

 
  

 

1

Recommendation:    

where  

t

t t
t ,...,m

x Cl

Cl score Cl ,xargmax






         φ φ :   : 
t j t t t j t

score Cl ,x Pr j R x |Cl Pr Cl | j R x    

         φ φ :   : 
t j t t t j t

score Cl ,x Pr j R x | Cl Pr Cl | j R x

 
     

confidence coverage

Application of decision rules to multiple criteria classification



Computational experiment – data sets
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Classification accuracy results: ε-VC-DomLEM gets minimal MAE

 Averaged stratified 10-fold cross validation estimates

 SMO - Sequential Minimal Optimization – implementation of SVM in Java (WEKA) 

Ripper - Repeated Incremental Pruning to Produce Error Reduction - version of IREP 

J48 – implementation of C4.5 in Java (WEKA),  OLM - Ordinal Learning Method 

OSDL - Ordinal Stochastic Dominance Learner

rank



Expressiveness of models – „black-box”

85



Expressiveness of models – „glass-box”
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Objects supporting the matching rules

The matching rules

Object to classify
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Illustrative examples



Example – Prime d’Excellence Scientifique (PES)  with jMAF

 Multiple criteria classification of candidates for PES award:

1. Comprehensive assessment (Global)

2. Publications (Avis 1)

3. Supervision of PhD students (Avis 2)

4. Influence (Avis 3)

5. Administrative responsibility (Avis 4)
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Example – Prime d’Excellence Scientifique (PES)  with jMAF
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Example – Prime d’Excellence Scientifique (PES)  with jMAF
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Example – Prime d’Excellence Scientifique (PES)  with jMAF
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Example – Prime d’Excellence Scientifique (PES)  with jMAF
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Illustrative example – Thierry’s choice    [Bouyssou et al. 2006]

 Objects: 14 cars;  Criteria: Crit_1,…,Crit_5

Car  Cost  Accel  Pick-up  Brakes  Road-h

1. Fiat Tipo 18 342 30.7 37.2 2.33 3.00

2. Alfa 33 15 335 30.2 41.6 2.00 2.50

3. Nissan Sunny 16 973 29.0 34.9 2.66 2.50

4. Mazda 323 15 460 30.4 35.8 1.66 1.50

5. Mitsubishi Colt 15 131 29.7 35.6 1.66 1.75

6. Toyota Corolla 13 841 30.8 36.5 1.33 2.00

7. Honda Civic 18 971 28.0 35.6 2.33 2.00

8. Opel Astra 18 319 28.9 35.5 1.66 2.00

9. Ford Escort 19 800 29.4 34.7 2.00 1.75

10. Renault 19 16 966 30.0 37.7 2.33 23.25

11. Peugeot 309 16V 17 537 28.3 34.8 2.33 2.75

12. Peugeot 309 15 980 29.6 35.3 2.33 2.75

13. Mitsubishi Galant 17 219 30.2 36.9 1.66 1.25

14. Renault 21 21 334 28.9 36.7 2.00 2.25



Illustrative example – Thierry’s choice by DRSA (inductive learning of rules)

 8 reference objects assigned by the DM to ordered classes: Good  Bad



Illustrative example – Thierry’s choice by DRSA (inductive learning of rules)

 All rules induced from binary classification of 8 reference objects

Minimal set of rules covering all examples: 

{4, 10}



Illustrative example – Thierry’s choice by DRSA (inductive learning of rules)

 Reclassification of 8 reference objects by rules with relative strength 75%
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Attractiveness measures
of monotonic decision rules



Why the rule attractiveness measures are important?

The number of rules 
induced from datasets is usually quite large

rule evaluation – attractiveness (interestingness) measures
(e.g. support, confidence, measures of Bayesian confirmation)

• overwhelming for human comprehension
• many rules are irrelevant, weak or obvious

(low practical value)

• each measure was proposed to capture      
different characteristics of rules

• the number of proposed measures is very large
• to make a proper choice of an attractiveness measure

one has to know its properties
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Rule induction

 Discovering rules from data is the domain of inductive reasoning (IR)

 IR uses data about a sample of larger reality to start inference

 S=U, A – data table,  where U and A are finite, non-empty sets 

U – universe;    A – set of attributes

 S=U, C, D – decision table,  where C – set of condition attributes,

D – set of decision attributes, CD=

 Rule induced from S is a consequence relation:

E  H read as  if E, then H 

where E is condition (evidence or premise) 

and H is conclusion (hypothesis or decision) 

formula built from attribute-value pairs (q,v)
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Decision rules

 is the set of all objects from U, having property E in S

 is the set of all objects from U, having property H in S

 In the Rough Set approach,        is:

• C-lower approximation, or

• C-upper approximation, or

• C-boundary of a union of classes H in S,

giving thus a certain, or possible, or approximate rule EH, resp.

 Basic quantitative characteristics of rules

S
E

S
H

S
H
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 Support of decision rule EH  in S:

 Strength of decision rule EH  in S:

 Confidence factor for decision rule EH  in S  (Łukasiewicz, 1913): 

(called also certainty)

 Coverage factor for decision rule EH  in S:

Measures characterizing decision rules in system S=U, C, D

 
 
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S
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

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Measures characterizing decision rules in system S=U, C, D

 Certainty and coverage factors refer to Bayes’ theorem

 Given a decision table S, the probability (frequency) is calculated as:

 In fact, without referring to prior and posterior probability:

 What is the certainty factor for EH is the coverage factor for HE

 This underlines a directional character of the statement if E, then H

(e.g. „if x is a square, then x is a rectangle”)
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Notation

 Notation corresponding to a 2x2 contingency table 

of rule’s premise (E) and conclusion (H)

a=sup(H,E)  is the number of objects in U satisfying both the 

premise E and the conclusion H of a rule E  H,

b=sup(H, ¬ E),

c=sup(¬ H, E),

d=sup(¬ H, ¬ E),

a+c=sup(E),   

a+b=sup(H),…

 a, b, c and d can also be regarded as frequencies that can be used to 

estimate probabilities, e.g. : 

Pr(E)=(a+c)/n, Pr(H)=(a+b)/n, Pr(H|E)=a/(a+c),  Pr(E|H)=a/(a+b)

H ¬ H ∑

E a c a+c

¬ E b d b+d

∑ a+b c+d a+b+c+d=n
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Property of confirmation

 Generally, measures possessing the property of confirmation

(confirmation measures) are expected to obtain:

 values >0 when the premise of a rule confirms the conclusion 

 values = 0 when the rule’s premise and conclusion are neutral to 

each other 

 values < 0 when the premise disconfirms the conclusion

 What does „premise confirms conclusion” mean?

 How to quantify such confirmation?
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Property of confirmation

 Four definitions are possible:

 Bayesian confirmation: Pr(H|E)>Pr(H)

 strong Bayesian confirmation:  Pr(H|E)>Pr(H|¬E)

 likelihoodist confirmation:  Pr(E|H)>Pr(E)

 strong likelihoodist confirmation: Pr(E|H)>Pr(E|¬H)

 An attractiveness measure c(H,E), has the 

property of Bayesian confirmation if is satisfies the following condition:

 

   

   

   

 

 if  0

 if  0

 if  0

 
















HPrEHPr

HPrEHPr

HPrEHPr

E,Hc
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Property of confirmation

 Bayesian approach is related to the idea that E confirms H, 

if H is more frequent with E rather than with E

(perspective of rule’s conclusion)

 Bayesian confirmation:  Pr(H|E)>Pr(H)

 H is satisfied more often when E is satisfied 

[then, this frequency is Pr(H|E)], rather than generically [Pr(H)]

Assumption: Pr(E)≠0

 strong Bayesian confirmation:  Pr(H|E)>Pr(H|¬E)

 H is satisfied more often, when E is satisfied, 

rather than when ¬E is satisfied

Assumption: Pr(E)≠0, Pr(¬E)≠0 
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Property of confirmation

 Likelihoodist approach is based on the idea that E confirms H, 

if E is more frequent with H rather than with ¬H

(perspective of rule’s premise)

 likelihoodist confirmation:  Pr(E|H)>Pr(E)

 strong likelihoodist confirmation:  Pr(E|H)>Pr(E|¬H)

107



Logical equivalance of four definitions of confirmation

 Bayesian confirmation:  a/(a+c) > (a+b)/n

 strong Bayesian confirmation:  a/(a+c) > b/(b+d)

 likelihoodist confirmation:  a/(a+b)>(a+c)/n

 strong likelihoodist confirmation:  a/(a+b) > c/(c+d)

 Obviously, the above definitions differ

 What is the relationship between them? 

 Do they „switch” (between +, zero and ―) at the same time?

 All four definitions boil down to one general, always-defined

formulation:

Advantage: ad-bc is never undefined, no denominator

   

0 if  0

0 if  0

0 if  0

 ,














ad-bc

ad-bc

ad-bc

EHc
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Popular measures of Bayesian confirmation

There are many alternative, non-equivalent measures of Bayesian confirmation

(Carnap 1950/1962)

(Christensen 1999)

(Mortimer 1988)

(Nozick 1981)

(Carnap 1950/1962)

(Finch 1960) 

(Rips 2001)

(Kemeny and Oppenheim 1952)
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Popular measures of Bayesian confirmation

 To avoid that some measures are undefined, e.g., for 

when a+c=0, we impose that all measures take value 0 for ad-bc = 0
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Monotonicity property of the confirmation measures

 Desirable property of  c(E,H) = f(a,b,c,d) : monotonicity (M)*

f should be non-decreasing with respect to a and d
and non-increasing with respect to b and c

a=supS(E,H), b=supS(E,H), c=supS(E,H), d=supS(E,H) 

 Interpretation of (M): (EH  if x is a raven, then x is black)

a) the more black ravens we observe, the more credible becomes EH

b) the more black non-ravens we observe, the less credible becomes EH 

c) the more non-black ravens we observe, the less credible becomes EH

d) the more non-black non-ravens we observe, the more credible becomes EH

 Example of c(E,H) with property (M) (Kemeny & Oppenheim 1952, Good 1984, 

Heckerman 1988, Pearl 1988, Fitelson 2001)
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*S.Greco, Z.Pawlak, R.Słowiński: Can Bayesian confirmation measures be useful for rough set
decision rules? Engineering Applications of Artificial Intelligence, 17 (2004) no.4, 345-361



Confidence vs. confirmation F

 Consider the possible result of rolling a die: 1,2,3,4,5,6, 

and let the conclusion H="the result is 6"

 E1="the result is divisible by 3" conf(H, E1)=1/2,  F(H, E1)=2/3

 E2="the result is divisible by 2" conf(H, E2)=1/3,  F(H, E2)=3/7

 E3="the result is divisible by 1" conf(H, E3)=1/6,  F(H, E3)=0

 The value of F has a more meaningful interpretation than conf

 In particular, in case of E3H  „in any case, the result is 6”, 

the „any case” does not add any information which could confirm that

the result is 6, thus F(H, E3)=0
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Confidence vs. confirmation F

 Consider the possible result of rolling a die: 1,2,3,4,5,6, 

and let the premise be kept fixed at E="the result is divisible by 2"

 H1 ="the result is 6" conf(H1, E)=1/3,  F(H1, E)=3/7 

 H2 ="the result is not 6" conf(H2, E)=2/3,  F(H2, E)=3/7

 EH2 has greater confidence than EH1

 However, EH2 is less interesting than EH1 because E reduces

the probability of conclusion H2 from 5/6=sup(H2) to 2/3=conf(H2, E), 

while it augments the probability of conclusion H1 from 1/6=sup(H1) 

to 1/3= conf(H1, E)

 In consequence, premise E disconfirms conclusion H2, which is

expressed by a negative value of F(H2, E)=3/7, and it confirms

conclusion H1, which is expressed by a positive value of F(H1, E)=3/7
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Support-confidence Pareto border

 Support-confidence Pareto border is the set of non-dominated, 

Pareto-optimal rules with respect to both rule support and confidence

 Mining the border identifies rules optimal with respect to measures 

such as: lift, gain, conviction, piatetsky-shapiro,… 

(Bayardo and Agrawal 1999)

Pareto border

confidence

support

no rules fall above this borderdominated rules 
fall in this area

- Pareto-optimal rules 
(non-dominated)
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Support-confidence vs. support-confirmation Pareto border

sup(H,E)

conf(H,E)

Dominated rules 

fall into this area 

No rules fall

outside this border

conf(H,E) =(a+b)/(a+b+c+d)=0.3

Area of rules to be discarded

1

The set of rules located on the support-confidence Pareto border is exactly 
the same as on the support-F Pareto border (Greco, Brzezińska, Słowiński 2007)

The support-F Pareto border is more meaningful
than the support-confidence Pareto border

F(H,E)=0
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Computational experiment: general info about the dataset

 Dataset “CENSUS” by B. Becker & R. Kohavi 1996

 32 561 instances

 9 nominal attributes

 workclass: Private, Local-gov, etc.;

 education: Bachelors, Some-college, etc.;

 marital-status: Married, Divorced, Never-married, et.; 

 occupation: Tech-support, Craft-repair, etc.;

 relationship: Wife, Own-child, Husband, etc.; 

 race: White, Asian-Pac-Islander, etc.; 

 sex: Female, Male;

 native-country: United-States, Cambodia, England, etc.;

 salary: >50K, <=50K 

 throughout the experiment, sup(EH) denotes relative rule support [0,1]
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Support-confidence vs. support-confirmation Pareto border

 Example of „CENSUS” dataset:

 9 attributes

 32.561 instances (objects) Association rules

premise conclusion support certainty

confirmation 

s

confirmation

f

race is White native-country is United-States 0,80 0,93 0,16 0,15

native-country is United-States race is White 0,80 0,88 0,24 0,09

class is <=50K native-country is United-States 0,68 0,91 -0,03 -0,04

native-country is United-States class is <=50K 0,68 0,75 -0,06 -0,01

native-country is United-States workclass is Private 0,67 0,73 -0,08 -0,02

workclass is Private native-country is United-States 0,67 0,90 -0,03 -0,05

race is White workclass is Private 0,63 0,74 -0,01 0,00

workclass is Private race is White 0,63 0,86 0,00 0,00

race is White class is <=50K 0,63 0,74 -0,11 -0,04

class is <=50K race is White 0,63 0,84 -0,07 -0,07

native-country is United-States sex is Male 0,62 0,68 0,00 0,00

sex is Male native-country is United-States 0,62 0,91 0,00 0,00

race is White sex is Male 0,60 0,70 0,14 0,05

sex is Male race is White 0,60 0,89 0,08 0,11

workclass is Private native-country is United-States and race is White 0,59 0,80 -0,03 -0,02

native-country is United-States and workclass is Private race is White 0,59 0,88 0,06 0,09

race is White and workclass is Private native-country is United-States 0,59 0,93 0,04 0,10

confid.
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Support-confidence vs. support-confirmation Pareto border

confirmation<=0

„CENSUS” dataset

association rules

supp  15%

conf  45%
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Support-confidence vs. support-confirmation Pareto border

confirmation<=0

„CENSUS” dataset

association rules

supp  15%

conf  20%
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Support-confidence vs. support-confirmation Pareto border

• indicates rules with negative confirmation

• the decision class constitutes over 70% of the whole dataset

• rules with high confidence can be disconfirming

• even some rules from the Pareto border need to be discarded 
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Support-confidence vs. support-confirmation Pareto border

• indicates rules with negative confirmation

• both Pareto borders contain the same rules



122

Support-confidence vs. support-confirmation Pareto border



Z-measure

 It can be observed that:

 Crupi et al. (2007) have therefore proposed to call them all by one 

name: Z-measure

                 normnormnormnormnormnormnorm GRCNMSD 
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A-measure

 In particular, we propose the likelihoodist counterpart of the

approach of Crupi et al. that transforms all of the considered

measures into measure A:
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S.Greco, R.Słowiński, I.Szczęch: Properties of rule interestingness measures and alternative
approaches to normalization of measures. Information Sciences, 216 (2012) 1-16



Complementarity of measures Z and A

 Measures Z and A can be regarded as complementary since: 

 measure Z comes from Bayesian inspiration, 

while measure A comes from likelihoodist inspiration

 measure Z can be expressed in terms of Pr(H|E) and Pr(H), 

while measure A in terms of Pr(H|¬E) and Pr(H)
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 Theorem:

For a set of rules with the same conclusion H,

due to (anti) monotonic dependencies between 

measures of support and anti-support on one hand,

and any attractiveness measure with property M on the other hand,

the best rules according to any measure with the property M

must reside on the support  anti-support Pareto optimal border

 The support – anti-support Pareto border is a set of non-dominated 

rules with respect to support and anti-support

Support  Anti-support Pareto border

135

S.Greco, R.Słowiński, I.Szczęch: Measures of rule interestingness in four perspectives 
of confirmation. Information Sciences, 346–347 (2016) 216–235.



136

Dominated rules fall 

into this area

No rules fall 

outside this border

0

anti-support=sup(H,E)

The best rules according to any measure with the property M
must reside on the support – anti-support Pareto border

Measures Z, A and c1-4 all satisfy property M

support=sup(H,E)

Support  Anti-support Pareto border
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Dominated rules fall 

into this area

No rules fall 

outside this border

0

anti-support=sup(H,E)

support=sup(H,E)

Support  Anti-support Pareto border

conf.=0, for 
(a+b)/(a+b+c+d)=50%

Rules lying above a linear function (line of conf.=0):

have a negative value of any confirmation measure

conf.=0, for 
(a+b)/(a+b+c+d)=66%

conf.=0, for 
(a+b)/(a+b+c+d)=33%

sup(H,E) = sup(H,E)[(a+b+c+d)/(a+b)-1]  
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Support  anti-support (workclass=Private)

• indicates rules with negative confirmation

• even some rules from the Pareto border need to be discarded 
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Variable-consistency DRSA



How to deal with „malicious” inconsistency in data?

 „Orthodox” lower approximations:
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How to deal with „malicious” inconsistency in data?

 „Orthodox” lower approximations:

 One „malicious” object is enough to empty the lower approximation

141

Lower approximations are empty!



Another example of inconsistent dataDominance-based Rough Set Approach

(DRSA)

q1

q
2

1 133 97 1914 2421

1

11

16

7

5

2

19
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18

y1
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y3

y4

y5

y6

y7

y8

y9

X1

X1

X1

X2

X3

X3

X3

X3

X3

6
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How to quantify inconsistency?
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 Consistency measures f(x) and g(x) are used to control consistency 

of object x included in the extended P-lower approximation

 gain-type consistency measures:

 cost-type consistency measures:

 Consistency measures are also used to control the consistency of 

induced decision rules.
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Consistency measures in VC-DRSA
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 Consistency measure f(x) (or g(x)) is monotonic iff it does not decrease

(or does not increase) when:

 (m1) the set of attributes is growing,

 (m2) the set of objects is growing,

 (m3) the union of ordered classes is growing,

 (m4) x improves its evaluation, so that it dominates more objects.
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Monotonicity properties of consistency measures

J.Błaszczyński, S.Greco, R.Słowiński, M.Szeląg: Monotonic variable consistency rough set 
approaches. Int. J. of Approximate Reasoning, 50 (2009) no.7, 979–999

S.Greco, B.Matarazzo, R.Słowiński: Parameterized rough set model using rough membership 
and Bayesian confirmation measures. Int. J. of Approximate Reasoning, 49 (2008) 285-300



 Gain-type consistency measure: 

rough membership, μ-consistency measure 

 It can be interpreted as an estimate of conditional probability:
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Consistency measures
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Coming back to our example…
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 Cost-type consistency measure:

ε-consistency measure 

 It can be interpreted as an estimate of conditional probability:

 The intuition behind ε-consistency measure : it says how far 

the implications

are not supported by the data
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Consistency measures

 
 

t

P tP

Cl

t

D x Cl
x

Cl
ε 

 



 




  P t
Pr y D x | y Cl     P t

Pr y D x | y Cl  

   ,   
P t P t

y D x y Cl y D x y Cl        

 
 

t

P tP

Cl

t

D x Cl
x

Cl
ε 

 



 






Coming back to our example…
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Monotonicity properties of consistency measures

consistency 
measure

(m1) (m2) (m3) (m4)

μ (rough) no yes yes no

μ’ no yes yes yes

B (Bayesian) no no no no

β no yes yes yes

ε yes yes no yes

ε* yes yes yes yes

ε’ yes yes yes yes

μ yes yes yes yes



 Rules are induced by VC-DomLEM algorithm

 VC-DomLEM is a sequential covering algorithm that induces 

strong rules characterised by required level of consistency

 Selection of the elementary conditions is based on two factors:

• consistency of the constructed rule

• support of the constructed rule

 The result is a minimal set of rules that covers all objects from 

the P-lower approximations

 Computational complexity of VC-DomLEM: O(n2m2)

where n=number of objects; m=number of attributes
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Induction of monotonic decision rules

J.Błaszczyński, R.Słowiński, M.Szeląg: Sequential covering rule induction algorithm for 
variable consistency rough set approaches. Information Sciences, 181 (2011) 987-1002
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Stochastic DRSA



Probabilistic model for DRSA

 To each object xiU, we assign a probability that xi belongs to 

„class” at least t:  

Pr(yit|xi)

where yi is classification decision for xi, t=1,…,m

 All axioms of probability are supposed to be satisfied, e.g.:

Pr(yi1|xi)=1

Pr(yit|xi)= 1Pr(yit+1|xi)

Pr(yit|xi)  Pr(yit’|xi) for t  t’

 These probabilities are unknown, but can be estimated from data

153



Probabilistic model for DRSA

 For each class t=2,…,m, we have a binary problem of estimating the

conditional probabilities Pr(yit|xi)  and  Pr(yi<t|xi)

 It is solved by isotonic regression

 let yit=1  if yit,  otherwise yit=0

 let pit be the estimate of probability Pr(yit|xi) 

 Choose estimates p
it which minimize the squared distance to 

class assignment yit, subject to the monotonicity constraints:
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Probabilistic model for DRSA

 Estimates obtained from isotonic regression satisfy all axioms

of probability

 Although estimates of Pr(yit|xi) and Pr(yi<t|xi), respectively p
it

and 1 p
it, are obtained in m separate problems (t=2,…,m), 

they are consistent with respect to t:

p
it  p

it’ for t  t’

(in analogy to Pr(yit|xi)  Pr(yit’|xi) for t  t’)

 Solving isotonic regression requires O(|U|4) time, 

but a good heuristic needs only O(|U|2) 
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Probabilistic model for DRSA

 Stochastic -lower approximations for classes „at least t”, „at most t-1”:

 We replace the unknown probabilities Pr(yit|xi)  and  Pr(yi<t|xi) 

by their estimates p
it obtained from isotonic regression:

 Parameter [0.5, 1] controls the allowed amount of inconsistency

 For =1, stochastic lower approximations boil down to the classical

lower upproximations
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Probabilistic model for DRSA

=1
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Probabilistic model for DRSA

=0.6

158



Probabilistic model for DRSA

 Do we really need to know the probability estimates to obtain

stochastic lower approximations ?

 In fact, we only need to know for which object xi,  p

it  

and for which xi,  p

it  1

 This can be found via linear programming (reassignment problem)
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W.Kotłowski, K.Dembczyński, S.Greco, R.Słowiński: Stochastic dominance-based rough set 
model for ordinal classification. Information Sciences, 178 (2008) 4019-4037



Probabilistic model for DRSA

 Reassignment problem

 let yit=1  if yit,  otherwise yit=0

 let dit be the decision variable (new class assignment)

 Reassign objects from „class” yit to „class” d
it, such that new class

assignments are consistent w.r.t. dominance principle:

 Due to unimodularity of the constraint matrix, the optimal solution

of this LP problem is always integer d
it{0, 1}

 For all objects consistent w.r.t. dominance principle,  d
it=yit
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Probabilistic model for DRSA

 Reassignment problem

 If we set  w0= and w1=1, then the optimal solution satisfies: 

d
it=1   p

it  

 If we set  w0=1 and w1=, then the optimal solution satisfies: 

d
it=0   p

it  1

 For each class t=2,…,m, solving the reassignment problem twice, we 

obtain without knowing the probability estimates! 
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 8 data sets, for which it is known from a domain knowledge that

monotonicity constraints are present
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Results of computational experiments with Stoch-DRSA

 Stoch-DRSA compared with 3 standard „of-the-shelf” classifiers: 

C4.5 (decision trees), Naïve Bayes, Support Vector Machines (SVM)

  set to 0.5 makes the class assignments univocal



 Mean absolute error ± standard deviation from 10-fold cross-validation

repeated 10 times to improve the replicability of the experiment
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Results of computational experiments with Stoch-DRSA

(results within one standard deviation from the best marked in bold)

 Stoch-DRSA which exploits solely the dominance relation outperforms

standard classifiers in most of the cases!
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Decision rule approach 
to multiple criteria choice and ranking
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Rough approximation of binary relations:
DRSA for multiple criteria choice & ranking

 Preference information of the DM in form of pairwise comparisons 

of reference objects is put in a pairwise comparison table (PCT)

 Comparing objects a,bAR on 

- a cardinal criterion, one puts in PCT the value i(a,b) = gi(a)−gi(b)

- an ordinal criterion, one puts in PCT the ordered pair (gi(a),gi(b))

dSce(gn(d),gn(e))...1(d,e)(d,e) 

...

...

...

...

... gn g1

............

bSc(gn(b),gn(c))1(b,c)(b,c)

bSca(gn(b),gn(a))1(b,a)(b,a)

aSb(gn(a),gn(b))1(a,b)(a,b)

Preference

information

Evaluations on criteriaPair of 
reference
objects

S – outranking

Sc – non-outranking

G = {g1,…,gn}

g1-cardinal; gn-ordinal

Pairwise 
Comparison

Table
(PCT)

BARAR
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 Problem  inconsistencies in the preference information, due to:

 uncertainty of information – hesitation, unstable preferences,

 incompleteness of the set of criteria,

 granularity of information.

 Inconsistency w.r.t. dominance principle:

2

S

Sc



1

(a,b)

(c,d)

2

1

-1

0 0

-2

1

-1

-2

2

holistic 
preference

a Sc b

while

c S d

DRSA for multiple criteria choice & ranking – inconsistency

non 
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Syntax of decision rules

if (x q1
h(q1) y) and (x q2

h(q2) y) and ... (x qp
h(qp) y), then xSy

if (x q1
h(q1) y) and (x q2

h(q2) y) and ... (x qp
h(qp) y), then xScy

S.Greco, B.Matarazzo, R.Słowiński: Decision rule approach. Chapter 13 in: J.Figueira et al.
(eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer, New York,

2005, pp. 507-562

choice
ranking
cardinal
criteria

pair of objects x,y evaluated on criterion g1

if xg1g1rq1 & yg1g1r’q1 & … xgpgprgp & ygpgpr’gp, then xSy

if xg1g1rq1 & yg1g1r’q1 & … xgpgprgp & ygpgpr’gp, then xScy

choice
ranking
ordinal
criteria
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DRSA for multiple criteria choice & ranking – dominance

 Marginal dominance relation for pairs of objects (a,b),(c,d)AA:

For cardinal criterion giG:

(a,b) (c,d)   if

i(a,b)  i(c,d)

 Dominance relation D2 for pairs of objects (a,b),(c,d)AA:

(a,b)D2(c,d) if (a,b) (c,d) for all giG,  i.e.,

if a is preferred to b at least as much as c is preferred to d for all giG

 is reflexive, transitive, but not necessarily complete (partial preorder)

 is a partial preorder on AA Gg

i

i
DD


 22

(a,b)  (c,d)   if

gi(a)

gigi





gi(d)
gi(b)

gi(c)

For ordinal criterion giG:

iD2

iD2

iD2

iD2

iD2
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DRSA – positive and negative dominance cones w.r.t. (a,b)

(a,b)

area dominating
(a,b)

area incomparable
with (a,b)

area dominated
by (a,b)

?

?

(c,d)

        baDdcAAdcbaD ,,:,, 22 positive dominance cone:

negative dominance cone:         feDbaAAfebaD ,,:,, 22 

(e,f)
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DRSA for multiple criteria choice & ranking – rough approximarions

 lower and upper approximations of outranking relation S:

 lower and upper approximations of non-outranking relation Sc:

 boundaries of S and Sc:
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DRSA for multiple criteria choice & ranking – properties

 Basic properties:

 Quality of approximation of S and Sc:

 (S,Sc)-reduct and (S,Sc)-core

SBS,SBS

SBS,SBS

SSS,SSS

cc

cc

ccc







     

     

     

 
 Bcard

SScard c

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DRSA for multiple criteria choice & ranking – VC-DRSA

 Variable Consistency DRSA (VC-DRSA) is relaxing the strict definitions

of lower approximations of S and Sc as

where cost-type consistency measures are defined as

and thresholds (if , then VC-DRSA = DRSA)

    

     SBSb,aSb,aS

SBSb,aSb,aS

c
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c
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cc 
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

 1,0, cSS 

 
  
 

 
  
 Scard

SbaDcard
ba

Scard

SbaDcard
ba

cS

c
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
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



,
,

,
,

2

2





 1,0:, BcSS 

0 cSS 

Błaszczyński J., Greco S., Słowiński R., Szeląg M.: Monotonic Variable Consistency Rough
Set Approaches, International  J. of Approximate Reasoning, 50 (2009) 979-999
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 Decision rules

 S-decision rules (induced from S)

if ( ) and ... and (ip(a,b)  ip) and

( and ) and ... and

(giz(a)  riz and giz(b)  siz), then aSb

 Sc-decision rules (induced from Sc)

if (i1(a,b)  i1) and ... and (ip(a,b)  ip) and

(gi(p+1)(a)  ri(p+1) and gi(p+1)(b)  si(p+1)) and ... and

(giz(a)  riz and giz(b)  siz), then aScb

e.g., if (cardinal 

criterion) and while 

(ordinal criterion), then car a outranks car b (aSb)

Induction of decision rules from rough approximations of S and Sc
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Induction of decision rules from rough approximations of S and Sc

if q1(a,b) ≥ -2.4 & q2(a,b) ≥ 4.0 then aSb

if q1(a,b) ≤ -1.1 & q2(a,b) ≤ 1.0 then aScb

if q1(a,b) ≤ 2.4 & q2(a,b) ≤ -4.0 then aScb

if q1(a,b) ≥ 4.1 & 

q2(a,b) ≥ 1.9 then aSb

 q1

 q2

x Sc y

z Sc y

u Sc y

u Sc z

y S x

y S z

y S u

t Sc q

u S z

Błaszczyński J., Słowiński R., Szeląg M.: Sequential Covering Rule Induction Algorithm for
Variable Consistency Rough Set Approaches, Information Sciences, 181, 2011, 987-1002



 Induction of rules using VC-DomLEM sequential covering algorithm, 

which generates a minimal set of decision rules

 Each generated rule is minimal and sufficiently consistent. 

Rule consistency is measured by cost-type rule consistency measure

defined as:

For each rT  RT , we require that

where:  T  {S,Sc},
RT = set of rules suggesting assignment to relation T,
rT  RT,

= set of pairs of objects covered by rT,
T = B – T.

DRSA for multiple criteria choice & ranking – decision rules
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]1,0[:ˆ TT R

Błaszczyński J., Słowiński R., Szeląg M.: Sequential Covering Rule Induction Algorithm for
Variable Consistency Rough Set Approaches, Information Sciences, 181 (2011) 987-1002
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Application of decision rules to multiple criteria choice & ranking

 Application of decision rules on the whole set A induces 

a specific preference structure on A (represented by directed multigraph)

 Any pair of objects (a,b)AA can match the decision rules in one of four ways:

 aSb and not aScb,  that is true outranking  (aSTb)

 aScb and not aSb, that is false outranking  (aSFb)

 aSb and aScb, that is contradictory outranking  (aSKb)

 not aSb and not aScb,  that is unknown outranking  (aSUb)

a b a

a ab b

b

aSTb

aSFb

aSKb

aSUb

S S

Sc

Sc

The 4-valued outranking underlines the presence and the absence
of positive and negative reasons of outranking.
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 The 4-valued outranking relation can be faithfully represented by 

three-valued fuzzy relation R3v:

Greco S., Matarazzo B., Słowiński R., Tsoukias A.: Exploitation of a rough approximation

of the outranking relation in multicriteria choice and ranking. [In]: LNE&MS 465, 

Springer, Berlin, 1998, pp.45–60.

 or, more directly, as:

where [] denotes indicator function (0-1)

 
    

2

1
,3

baSaSb
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c

v



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

baS

baSbaS

baS

baR
T

KU

F

v

if1

orif2/1

if0

,3

Application of decision rules to multiple criteria choice & ranking
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DRSA for multiple criteria choice & ranking – ranking methods

 In order to obtain final recommendation, relation R3v is exploited

using a ranking method. We consider the following ranking methods:

 Net Flow Rule (NFR) – yields weak order using scoring function

SD : A   defined as:                                             .

 Iterative Net Flow Rule (It.NFR) – yields weak order by iterative

application of scoring function SD.

 Min in Favor (MiF) – yields weak order using scoring function

mF defined as:                                .

 Iterative Min in Favor (It.MiF) – yields weak order by iterative

application of scoring function mF.

 Leaving and Entering Flows (L/E) – yields a partial preorder being

the intersection of two weak orders obtained using scoring

functions SF and –SA, defined as:

 
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Desirable properties of ranking methods

 We consider the following 10 desirable properties of ranking methods

(in order of importance):

 neutrality (property N),

 monotonicity (property M),

 covering compatibility (property CC),

 discrimination (property D),

 faithfulness (property F),

 data-preservation (property DP),

 independence of non-discriminating objects (property INDO),

 independence of circuits (property IC),

 ordinality (property O),

 greatest faithfulness (property GF).

Szeląg M, Greco S, Słowiński R, Rule-based approach to multicriteria ranking. Chapter 6 

in: M.Doumpos, E.Grigoroudis (eds.), Multicriteria Decision Aid and Artificial Intelligence: 

Links, Theory and Applications, Wiley-Blackwell, London, 2013, pp. 127-160.
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Desirable properties of ranking methods

where: T/F – proof in the literature, T/F – proven by the authors

The best ranking method w.r.t. the considered properties is NFR

Property / RM NFR It.NFR MiF It.MiF L/E

N T T T T T

M T F T F T

CC T T T T T

D T T F T T

F T T F T T

DP T T T T T

INDO T T F F T

IC T F F F F

O F F T T F

GF F F T T T
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DRSA for multiple criteria choice & ranking – Net Flow Score

a

d

bc

e

S S

ScSc

weakness of a strength of a

NFS(a) = strength(a) – weakness(a)

(–,a)

(+,a) (+,f)

(–,f)

aSb – positive (+) argument in favor of a but against b

aScb – negative (–) argument against a but in favor of b

       
 





aAb

cc abSbaSbSaaSb
\

NFS(a) =

where aA and [] denotes indicator function
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DRSA for multiple criteria choice & ranking – final recommendation

 Final recommendation:

ranking: weak order over A determined by NFS

best choice: object(s) a*A such that NFS(a*)= max {NFS(a)}
aA

Fortemps Ph, Greco S, Słowiński R, Multicriteria decision support using rules that represent 
rough-graded preference relations, European J. Operational Research, 188 (2008) 206-223.
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DRSA for multiple criteria choice & ranking – illustrative example

 Mrs Brown is a scientist and wants to buy a notebook for personal use

 She would like to spend no more than 1700 EUR

 She is going to use it for: writing scientific papers, programming, 

performing computational experiments, and watching movies

 She considers 22 high-end notebooks (set A) that have Intel Core i7 

processor with four cores, at least 4 MB of RAM (DDR3, 1333MHz), and 

monitor at least 15 inch with Full HD resolution (1920 x 1080 pixels)

 She evaluates the notebooks by three cardinal criteria:

 price in EUR (g1, to be minimized),

 diagonal of a monitor in inches (g2, to be maximized),

 weight in kilograms (g3, to be minimized).

 In the past, she tested 6 notebooks n1, n4, n10, n12, n14, n18 (reference

objects), and she ranks them as follows: n4  n1  n12  n14  n10  n18
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Multicriteria evaluation of 6 reference notebooks (objects)

id model price
g1

diagonal
g2

weight
g3

n1 Asus N75SF-V2G-TZ025V 865 17.3 3.4

… … … … …

n4 DELL XPS L502X 1031 15.6 2.7

… … … … …

n10 Samsung NP700G7A-S02PL 1656 17.3 3.81

… … … … …

n12 Asus G53SX-IX059V 1372 15.6 3.92

… … … … …

n14 Asus G73SW-91037V 1538 17.3 3.9

… … … … …

n18 Lenovo ThinkPad T520 1467 15.6 2.5

… … … … …

DRSA for multicriteria choice & ranking – illustrative example
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 The ranking of reference objects by the DM is a source of preference 

information: n4  n1  n12  n14  n10  n18

 aSb whenever notebook a is ranked not lower than notebook b,

 aScb whenever notebook a is ranked lower than notebook b.

 In this way we get B=ARAR

 Given the preference information, the following calculations are 

performed using jRank*

*http://www.cs.put.poznan.pl/mszelag/Software/jRank/jrank.pdf

DRSA for multicriteria choice & ranking – illustrative example

http://www.cs.put.poznan.pl/mszelag/Software/jRank/jrank.pdf
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 The preference information in the form of pairwise comparisons of six 

reference objects yields a PCT composed of 36 pairs of objects

(a,b) 1 2 3 relation

(n4,n4) 0 0 0 S

(n4,n1) 166 -1.7 -0.7 S

… … … … …

(n1,n4) -166 1.7 0.7 Sc

… … … … …

(n12,n14) -166 -1.7 0.02 S

… … … … …

(n12,n18) -95 0.0 1.42 S

… … … … …

(n18,n10) -189 -1.7 -1.31 Sc

… … … … …

PCT contains in total

10 inconsistent pairs

of objects

card(S)=21

card(Sc)=15

DRSA for multicriteria choice & ranking – illustrative example
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 Inconsistent pairs of objects in the PCT

(n1,n4) (n14,n12) (n18,n12) (n18,n14) (n18,n10)

(n4,n1) * * *

(n12,n14) *

(n12,n18) *

(n14,n18) *

(n10,n18) * *

dominated
pair  S

dominating pair  Sc

 We apply VC-DRSA, setting thresholds . In this way:

 a pair of objects (a,b)∈S is included in S if it is dominated by 

at most 1 out of 15 pairs of objects belonging to Sc

 a pair of objects (a,b)∈Sc is included in Sc if it dominates

at most 2 out of 21 pairs of objects belonging to S

1.0 cSS 

DRSA for multicriteria choice & ranking – illustrative example
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 Decision rules induced by VCDomLEM from S and Sc:

Decision rule rT supp

if 1(a,b)  -284, then aSb 9 0

if 1(a,b)  -166 and 3(a,b)  0.02, then aSb 7 0.067

if 1(a,b)  -71 and 2(a,b)  0, then aSb 15 0.067

if 1(a,b)  95, then aScb 12 0.095

if 1(a,b)  -189 and 2(a,b)  -1.7, then aScb 4 0.095

 TT r̂

where supp denotes the number of pairs of objects supporting rule rT

 E.g., the 1st rule is read as: „if the difference of price for notebook a

and notebook b is at most -284, then a is weakly preferred to b”

 The induced rules are relatively short and the number of rules is small 

w.r.t. the size of the PCT

DRSA for multicriteria choice & ranking – illustrative example



Ranking of all 22 notebooks by the Net Flow Score procedure

Rank notebook(s) score

1 n1 39

2 n2 38

3 n6 37

4 n3 30

5 n4, n5 24

… … …

12 n7, n12 -8

13 n14 -14

14 n20 -16

15 n22 -20

16 n18 -27

17 n17, n19 -32

18 n9, n10 -35

Reference ranking

n4 

n1

n12

n14

n10

n18

Kendal’s  = 0.733

„Inverted” pairs:

(n4,n1), (n10,n18)

were inconsistent

in the PCT



 Objects: 14 cars;  Criteria: Crit_1,…,Crit_5

Car  Cost  Accel  Pick-up  Brakes  Road-h

1. Fiat Tipo 18 342 30.7 37.2 2.33 3.00

2. Alfa 33 15 335 30.2 41.6 2.00 2.50

3. Nissan Sunny 16 973 29.0 34.9 2.66 2.50

4. Mazda 323 15 460 30.4 35.8 1.66 1.50

5. Mitsubishi Colt 15 131 29.7 35.6 1.66 1.75

6. Toyota Corolla 13 841 30.8 36.5 1.33 2.00

7. Honda Civic 18 971 28.0 35.6 2.33 2.00

8. Opel Astra 18 319 28.9 35.5 1.66 2.00

9. Ford Escort 19 800 29.4 34.7 2.00 1.75

10. Renault 19 16 966 30.0 37.7 2.33 3.25

11. Peugeot 309 16V 17 537 28.3 34.8 2.33 2.75

12. Peugeot 309 15 980 29.6 35.3 2.33 2.75

13. Mitsubishi Galant 17 219 30.2 36.9 1.66 1.25

14. Renault 21 21 334 28.9 36.7 2.00 2.25

Indirect preference information – „Thierry’s choice”  
(data from [Bouyssou et al. 2006])



Indirect preference information – „Thierry’s choice”  
(data from [Bouyssou et al. 2006])

 5 reference objects ranked by the DM: 11  3  13  9  14

Pairwise
Comparison 
Table (PCT)

S = outranking

Sc = non-outranking



Illustrative example – Thierry’s choice by DRSA (inductive learning of rules)

 All minimal rules (based on pairs of objects) induced from PCT

Minimal set of rules covering all actions: 

{1, 7, 9, 17, 18}



Illustrative example – Thierry’s choice by DRSA (inductive learning of rules)

 Ranking of all 14 objects by Net Flow Score exploitation procedure

rank object score

1 6 24

2 2 22

3 5, 12 16

5 10 10

6 4 6

7 11 0

8 3 -2

9 1 -4

10 13 -10

11 8 -13

12 7 -17

13 9 -22

14 14 -26

Reference ranking: 

11  3  13  9  14
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Decision rule approach
to decision under risk & uncertainty
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DRSA for decision under risk and uncertainty

 ST={st1, st2,  st3, ...} – set of elementary states of the world

 Pr – a priori probability distribution over ST

e.g.: pr1=0.25, pr2=0.30, pr3=0.35, ...

 A={A1, A2, A3, A4, A5, A6, ...} – set of acts

 X={0, 10, 15, 20, 30, ...} – set of possible outcomes (gains)

 Cl={Cl1, Cl2, Cl3 , ...} – set of quality classes of the acts, 

e.g.: Cl1=bad acts, Cl2=medium acts, Cl3=good acts

 (Ai,)=x means that by act Ai one can gain at least x with at least 

probability =Pr(W), where WST is an event

 There is a partial preorder on probabilities  of events

 Act Ai stochastically dominates Aj iff (Ai,)  (Aj,) 

for each probability 
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DRSA for decision under risk and uncertainty

 Preference information given by a Decision Maker:

assignment of some acts to quality classes

 Example:



DRSA for decision under risk and uncertainty



3Cl



2Cl

 Decision rules induced from rough approximations of quality classes

if (Ai, 0.75)20 and (Ai, 1)10,  then Ai  (A6)

“if the probability of gaining at least 20 is ≥0.75, and the probability 

of gaining at least 10 is 1, then act Ai is at least good” 

if ’(Ai, 0.25)20 and ’(Ai, 0.75)15, then Ai  (A3, A4, A5)

“if the probability of gaining at most 20 is ≥0.25, and the probability 

of gaining at most 15 is ≥0.75, then act Ai is at most medium”

 Generalization: 

DRSA for decision under risk with outcomes distributed over time

(decision under uncertainty and time preference)

Greco S., Matarazzo B., Slowinski R., Dominance-based rough set approach to decision under 

uncertainty and time preference. Annals of Operations Research, 176 (2010) 41-75
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DRSA-PCT to decision under risk and uncertainty

 Decision rules induced from rough approximations of binary 

preference relations on pairs of acts Ai, Aj :

„if the probability of gaining at least 20$ more is ≥0.75,

and the probability of gaining at least 10$ more is 1, 

then act Ai is better than act Aj” 

„if the probability of gaining at least 10$ less is ≥0.5,

and the probability of gaining at least 5$ less is ≥0.8, 

then act Ai is worse than act Aj” 
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What other monotonic relationships can be handled by DRSA?

 DRSA – dominance relation:

„The more, the better”

 DRSA for decision under uncertainty – stochastic dominance relation:

„The more and the more probable, the better”

 DRSA for time preferences – time dominance relation:

„The more and the earlier, the better”

 DRSA for time preference & uncertainty – time stochastic dominance:

„The more, the more probable and the earlier, the better”

 DRSA can be applied to a large collection of operational research 

problems, such as portfolio selection, scheduling under uncertainty,

inventory management, interactive (robust) multiobjective optimization, 

…
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Decision rule approach
to interactive multiobjective optimization
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DRSA to Interactive Multiobjective Optimization

 

 

   
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
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



x

x

x

x





where x=[x1,…,xk] is a vector of decision variables

fj(x), j=1,…,n, are real-valued objective functions

gi(x), i=1,…,m, are real-valued functions of the constraints

bi, i=1,…,m, are constant RHS of the constraints
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Multiobjective Optimization – dominance relation  

 Solution aA is Pareto-optimal (non-dominated) if and only if there is

no other solution bA such that fi(b)fi(a), i{1,…,n}, and on at least

one objective j{1,…,n},  fj(b)fj(a)

f1(x)

f2(x)

A

f1 and f2 are to be minimized

Pareto-optimal solutions
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Evolutionary Multiobjective Optimization (EMO)
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50

100

200

300

f2

f1

iterations
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Dominance-based association rules describing the Pareto optimal set

 Relationships between attainable values of different objective functions

(criteria) in the set of Pareto-optimal solutions

 Formal syntax (in case of maximization of objectives): 

If fi1(x)ri1 and fi2(x)ri2 and … fip(x)rip, 

then fip+1(x)rip+1 and fip+2 (x)rip+2 and … fiq(x)riq

 Example from product-mix problem:

 „if profit  148 & time_machine  150, 

then amount_product_xB  2”

Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach to Interactive 

Multiobjective Optimization, Chapter 5 in J.Branke, K.Deb, K.Miettinen, R.Słowiński (eds.), 

Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer, State-of-

the-Art Surveys, LNCS 5252, Berlin, 2008, pp.121-156



Multiobjective Optimization – interactive procedures

207
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What preference information and preference model should be used ?

 The traditional interactive methods appear to be too demanding 

of the cognitive effort of their users

 We advocate for „easy” preference information = natural and partial

 The most natural is a holistic comparison of some solutions

 The preference model should be intelligible and comprehensible

 We advocate for decision rules 



Interactive cycle with elicitation of preferences

209

Decision
Maker

Inference
engine

Optimizer

Preference information

P
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Set of solutions

DRSA
decision 

rules

Holistic comparison
of some solutions



Example

solution f1 f2 DM

s1 2 14

s2 3 12

s3 5 9

s4 7 8

s5 8 7

s6 11 6

210

Sample of 6 non-dominated solutions submitted to evaluation of the DM 

f1min

f2min

0
2 64 8 10

14

12 14

12

10

8

6

4

2

s2

s1

s3

s4

s5
s6



Example

solution f1 f2 DM

s1 2 14 bad

s2 3 12 bad

s3 5 9 good

s4 7 8 good

s5 8 7 good

s6 11 6 bad

211

f1min

f2min

0
2 64 8 10

14

12 14

12

10

8

6

4

2

s2

s1

s3

s4

s5
s6

Sample of 6 non-dominated solutions submitted to evaluation of the DM 



Example

solution f1 f2 DM

s1 2 14 bad

s2 3 12 bad

s3 5 9 good

s4 7 8 good

s5 8 7 good

s6 11 6 bad

212

f1min

f2min

0
2 64 8 10

14

12 14

12

10

8

6

4

2

s2

s1

s3

s4

s5
s6

Lower appx
of „bad”

Lower appx
of „good”

Sample of 6 non-dominated solutions submitted to evaluation of the DM 



Example

solution f1 f2 DM

s1 2 14 bad

s2 3 12 bad

s3 5 9 good

s4 7 8 good

s5 8 7 good

s6 11 6 bad

213

r1

f1min

f2min

0
2 64 8 10

14

12 14

12

10

8

6

4

2

s2

s1

s3

s4

s5
s6

r2

r3

r1: if f2(s)12,  then s is bad supported by {s1,s2}

r2: if f1(s)11,  then s is bad supported by {s6}

r3: if f1(s)8  &  f2(s)9, then s is good supported by {s3,s4,s5}

Sample of 6 non-dominated solutions submitted to evaluation of the DM 
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DRSA to Interactive Multiobjective Optimization – DRSA-IMO

1) Present to DM a representative set of efficient (Pareto-optimal) solutions

2) Present association rules showing relationships between the attainable 

values of the objective functions and relationships between decision 

variables and objective functions in the Pareto-optimal set

3) If DM finds a satisfactory solution, then stop, otherwise go to step 4)

4) DM selects efficient solutions judged as (relatively) good and bad

5) DRSA „if...,then...” decision rules are induced from info got in step 4)

6) The most interesting decision rules are presented to DM

7) The DM selects one or more decision rules being the most adequate 

to his/her preferences

8) Constraints relative to these decision rules are included in the set of 

constraints

9) Go back to step 1)
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Example of Production Mix Problem: data

 Three products: A, B, C

 Produced quantity (decision variables): xA , xB , xC

 Price: pA=20, pB=30, pC=25

 Time machine 1: t1
A=5, t1

B=8, t1
C=10

 Time machine 2: t2
A=8, t2

B=6, t2
C=2

 Raw material 1: r1
A=1, r1

B=2, r1
C=0.75; unit cost: 6

 Raw material 2: r2
A=0.5, r2

B=1, r2
C=0.5; unit cost: 8

 Market limit: xA* =10, xB* =20, xC* =10

Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach to Interactive
Multiobjective Optimization, in J.Branke, K.Deb, K.Miettinen, R.Słowiński (eds.), Multiobjective 
Optimization: Interactive and Evolutionary Approaches. Springer, Berlin, 2008, pp.121-156
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Example of Production Mix Problem: mathematical formulation

 Max  Profit

 Min  Total time (machine 1 + machine 2)

 Max  Produced quantity of A

 Max  Produced quantity of B

 Max  Produced quantity of C

 Max  Sales
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Example of Production Mix Problem: objectives and constraints

 Max  20xA + 30xB + 25xC – (1xA + 2xB + 0.75xC)6 +             

 (0.5xA  + xB  + 0.5 xC )8 [Profit] 

 Min  5xA + 8xB + 10xC + 8xA + 6xB + 2xC

[Total time machine 1 + machine 2]

 Max  xA [Produced quantity of A]

 Max  xB [Produced quantity of B]

 Max  xC [Produced quantity of C]

 Max  20xA + 30xB + 25xC [Sales]

 xA10, xB20, xC10 [Market Limits]

 xA0, xB 0, xC0 [Non-negativity]
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Set of representative efficient solutions of a production mix problem

Efficient
solutions

Profit Total 

time

Prod.

xA

Prod.

xB

Prod.

xC

Sales

S1 165 120 0 0 10 250

S2 172.692 130 0.769 0 10 265.385

S3 180.385 140 1.538 0 10 280.769

S4 141.125 140 3 3 4.917 272.916

S5 148.375 150 5 2 4.75 278.75

S6 139.125 150 5 3 3.583 279.583

S7 188.077 150 2.308 0 10 296.154

S8 159 150 6 0 6 270

S9 140.5 150 6 2 3.667 271.667

S10 209.25 200 6 2 7.833 375.833

S11 189.375 200 5 5 5.417 385.417

S12 127.375 130 3 3 4.083 252.083

S13 113.625 120 3 3 3.25 231.25
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Sorting of representative efficient solutions

Efficient
solutions

Profit Total 

time

Prod.

xA

Prod.

xB

Prod.

xC

Sales Class

S1 165 120 0 0 10 250 *

S2 172.692 130 0.769 0 10 265.385 *

S3 180.385 140 1.538 0 10 280.769 Good

S4 141.125 140 3 3 4.917 272.916 Good

S5 148.375 150 5 2 4.75 278.75 Good

S6 139.125 150 5 3 3.583 279.583 *

S7 188.077 150 2.308 0 10 296.154 *

S8 159 150 6 0 6 270 *

S9 140.5 150 6 2 3.667 271.667 Good

S10 209.25 200 6 2 7.833 375.833 *

S11 189.375 200 5 5 5.417 385.417 *

S12 127.375 130 3 3 4.083 252.083 *

S13 113.625 120 3 3 3.25 231.25 *
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The most interesting DRSA decision rules

 If profit140.5 and time150 and xB2, 

then product mix is good (s4,s5,s9)

 If time140 and xA1.538 and xC10, 

then product mix is good (s3)

 If time150 and xB2 and xC4.75, 

then product mix is good (s4,s5)

 If time140 and sales272.917, 

then product mix is good (s3,s4)

 If time150 and xB2 and xC3.667 and sales271.667, 

then product mix is good (s4,s5,s9)
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Selected decision rules

 DM selected two rules as the most adequate to preferences:

r1: If profit  140.5 and time  150 and xB  2, 

then product mix is good (s4,s5,s9)

r2: If time  140 and sales  272.917, 

then product mix is good (s3,s4)
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Added constraints for decision rule r1

 First selected decision rule r1:

If profit  140.5 and time  150 and xB  2, 

then product mix is good (s4,s5,s9)

 Added constraints to the production mix problem:

 20xA + 30xB + 25xC – (1xA + 2xB + 0.75xC)6 +                   

 (0.5xA  + xB  + 0.5 xC)8 + (11)M  140.5 [profit  140.5] 

 5xA + 8xB + 10xC + 8xA + 6xB + 2xC  (11)M  150                                                

[time  150]

 xB + (11)M  2 [produced quantity of B  2]

where 1{0,1}, M big number (106); if 1=1, then r1 is satisfied;

if 1=0, then r1 is not satisfied because each above constraint

is satisfied whatever value of decision variables



223

Added constraints for decision rule r2

 Second selected decision rule r2:

If time  140 and sales  272.917,

then product mix is good (s3,s4)

 Added constraints to the production mix problem:

 5xA + 8xB + 10xC + 8xA + 6xB + 2xC  (12)M  140.5 

[time  140] 

 20xA + 30xB + 25xC + (12)M  272.917 [sales  272.9167]

where 2{0,1}, M big number (106); if 2=1, then r2 is satisfied
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Condition for filtering good solutions

 A solution is good if it satisfies at least one of decision rules r1 & r2:

1 + 2  1



225

Set of representative efficient solutions (second iteration)

Efficient
solution

Profit Total time Prod. xA Prod. xB Prod. xC Sales 1 2

S1’ 210.7143 150 0 2.142857 10 314.2857 1 0

S2’ 140.5 150 0 9.469565 1.452174 320.3913 1 0

S3’ 140.5 103.5676 0 2 6.297297 217.4324 1 0

S4’ 140.5 150 5.097923 2 4.643917 278.0564 1 0

S5’ 120 140 0 10 0 300 0 1

S6’ 191.875 134.8959 1.145835 0 10 272.9167 0 1

S7’ 150 109.7297 0 2 6.810811 230.2703 1 0

S8’ 150 127.9459 2 2 6.162162 254.0541 1 0

S9’ 150 135 2 3.134783 5.426087 269.6957 1 0

S10’ 160.875 135 2 2 6,75 268.75 1 0

S11’ 192.7143 135 1 0.142857 10 274.2857 0 1

S12’ 184.5 135 1 1 9 275 0 1
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 If profit140.5, then xB9.4696 and sales320.3913 

(s1’,s2’,s3’,s4’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

 If time140, then xB10 and sales300 

(s3’, s5’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

 If time135, then sales275 

(s3’, s6’,s7’,s8’,s9’,s10’,s11’,s12’)

 If xC1.4522, then xB9.4696 and sales320.391

(s1’,s2’,s3’,s4’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

 If time135, then profit192.7143  

(s3’, s6’,s7’,s8’,s9’,s10’,s11’,s12’)

 If profit150, then xA2 and xC3.1348 

(s1’,s2’,s3’,s4’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

Association rules describing relationships between objectives
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 If time135, then xA2 and xB3.1348 

(s3’,s6’, s7’,s8’,s9’,s10’,s11’,s12’)

 If profit150, then time109.7297

(s1’, s6’,s7’,s8’,s9’,s10’,s11’,s12’)

 If xC5.4261, then xA2 and xB3.1348 

(s1’,s3’,s6’, s7’,s8’,s9’,s10’,s11’,s12’)

 If sales272.9167, then time134.8959

(s1’,s2’, s4’,s5’,s6’,s11’,s12’)

 If profit150 and sales254.0541, then time127.9459 and xA2

(s1’, s6’,s8’,s9’,s10’,s11’,s12’)

 If sales230.2703, then time109.7297

(s1’,s2’,s4’,s5’,s6’,s7’,s8’, s9’,s10’,s11’,s12’)

Association rules describing relationships between objectives
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 If sales230.2703, then time109.7297

(s1’,s2’,s4’,s5’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

 If sales254.0541, then time127.9459

(s1’,s2’,s4’,s5’,s6’,s8’,s9’,s10’,s11’,s12’)

Association rules describing relationships between objectives
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 Describe the Pareto-optimal set in terms of decision variables:

 If xA  2, then xB  3.1348

(s4’,s8’,s9’,s10’)

 If xC  5.4261, then xA  3 and xB  4

(s1’,s3’,s6’,s7’,s8’,s9’,s10’,s11’,s12’)

Association rules describing relationships between decision variables
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Association rules describing relationships between decision 
variables and objectives

 If xC  6.16, then xB  2  and sales  254.05

(s2’,s4’,s5’,s8’,s9’)

 If xC  6.81, then xB  2                         

(s2’,s3’,s4’,s5’,s7’,s8’,s9’,s10’)

 If xA  2, then xB  2  and sales  254.05

(s4’,s8’,s9’,s10’)

 If xC  6.81, then profit  150  and sales  230.27

(s1’,s6’,s7’,s11’,s12’)

 If xB  2  and xC  6.75, then time  135                

(s6’,s7’,s10’,s11’,s12’)

 If xB  3.15 , then sales  269.7

(s2’,s5’,s9’)
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 If xC  10, then profit  191.875  and sales  279.92

(s1’,s6’,s11’)

 If xA  1 and xC  9, then profit  184.5 and time  135                         

(s6’,s11’,s12’)

 If xA  2 and xC  5.43, then profit  150  and time  135

(s8’,s9’,s10’)

 If xA  1 and xC  9, then profit  184.5    

(s1’,s11’,s12’)

Association rules describing relationships between decision 
variables and objectives
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Sorting of representative efficient solutions (second iteration)

Efficient
solution

Profit Total time Prod. xA Prod. xB Prod. xC Sales Class

S1’ 210.7143 150 0 2.142857 10 314.2857 *

S2’ 140.5 150 0 9.469565 1.452174 320.3913 Bad

S3’ 140.5 103.5676 0 2 6.297297 217.4324 Bad

S4’ 140.5 150 5.097923 2 4.643917 278.0564 *

S5’ 120 140 0 10 0 300 Bad

S6’ 191.875 134.8959 1.145835 0 10 272.9167 *

S7’ 150 109.7297 0 2 6.810811 230.2703 *

S8’ 150 127.9459 2 2 6.162162 254.0541 *

S9’ 150 135 2 3.134783 5.426087 269.6957 *

S10’ 160.875 135 2 2 6.75 268.75 Good

S11’ 192,7143 135 1 0.142857 10 274.2857 *

S12’ 184.5 135 1 1 9 275 Good
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DRSA decision rules describing «good» solutions

 If profit160.875 and xA2, 

then product mix is good (s10’)

 If profit160.875 and xB2,

then product mix is good (s10’)

 If profit184.5  and time135 and xB1, 

then product mix is good (s12’)

 If profit184.5  and xA1 and xB1,

then product mix is good (s12’)

 If xA2 and xC5.75,

then product mix is good (s10’)

 If time135 and xB1 and xC9,

then product mix is good (s12’)
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DRSA decision rules describing «good» solutions

 If xA1 and xB1 and xC9, 

then product mix is good (s12’)

 If time135 and sales275,

then product mix is good (s12’)

 If profit184.5 and xA1 and sales275, 

then product mix is good (s12’)

 If xA1 and xC9 and sales275,

then product mix is good (s12’)

 If time135  and xB2 and xC6.75 and sales275, 

then product mix is good (s10’)



235

DRSA decision rules describing «bad» solutions

 If profit120, 

then product mix is bad (s5’)

 If profit140.5 and xA  0,

then product mix is bad (s2’,s3’,s5’)

 If xC  1.452174, 

then product mix is bad (s2’,s5’)

 If xA  0 and xC  6.297,

then product mix is bad (s2’,s3’,s5’)

 If sales217.43245,

then product mix is bad (s3’)

 If time140  and xA  0 and sales300,

then product mix is bad (s5’)
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Selected decision rules

 DM selected four rules as the most adequate to preferences:

r3: If profit  184.5  and time  135 and xB  1, 

then product mix is good (s12’)

r4: If time  135 and xB  2 and xC  6.75 and sales  275, 

then product mix is good (s10’)

r5: If profit  140.5 and xA 0, 

then product mix is bad (s2’,s3’,s5’)

r6: If time  140  and xA 0 and sales  300,

then product mix is bad (s5’)
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Added constraints for decision rule r3

 Decision rule r3:

If profit  184.5  and time  135 and xB  1, 

then product mix is good (s12’)

 Added constraints to the production mix problem:

 20xA + 30xB + 25xC – (1xA + 2xB + 0.75xC)6 +                   

 (0.5xA  + xB  + 0.5 xC)8  + (13)M  184.5 [profit  184.5] 

 5xA + 8xB + 10xC + 8xA + 6xB + 2xC  (13)M  135                                                

[time  135]

 xB + (13)M  1 [produced quantity of B  1]

where 3{0,1}, M big number (106); if 3=1, then r3 is satisfied
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Added constraints for decision rule r4

 Decision rule r4:

If time  135 and xB  2 and xC  6.75 and sales  275, 

then product mix is good (s10’)

 Added constraints to the production mix problem:

 5xA + 8xB + 10xC + 8xA + 6xB + 2xC  (14)M  135                

[time  135]

 xB + (14)M  2 [produced quantity of B  2]

 xC + (14)M  6.75 [produced quantity of C  6.75]

 20xA + 30xB + 25xC + (14)M  275 [sales  275]

where 4{0,1}, M big number (106); if 4=1, then r4 is satisfied
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Condition for filtering good solutions

 A solution is good if it satisfies at least one of decision rules r3 & r4:

3 + 4  1
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Added constraints for decision rule r5

 Decision rule r5:

If profit  140.5 and xA  0,

then product mix is bad (s2’,s3’,s5’)

 Added constraints to the production mix problem:

 20xA + 30xB + 25xC – (1xA + 2xB + 0.75xC)6 +                   

 (0.5xA  + xB  + 0.5 xC)8 + (151)M  140.5+ [profit > 140.5] 

 xA + (151)M   [produced quantity of A > 0]

 51+52  1

where 51,52{0,1}, M big number (106),  small positive (10-3)

 A solution is not bad if at least one condition of r5 does not hold
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Added constraints for decision rule r6

 Decision rule r6:

If time  140 and xA  0 and sales  300,

then product mix is bad (s5’)

 Added constraints to the production mix problem:

 5xA + 8xB + 10xC + 8xA + 6xB + 2xC  (161)M  140  

[time < 140]

 xA +(162)M   [produced quantity of A > 0]

 20xA + 30xB + 25xC + (163)M  300 +  [sales > 300]

 61+62+63  1

where 61,62,63{0,1}, M big number (106),  small positive (10-3)

 A solution is not bad if at least one condition of r6 does not hold
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Set of representative efficient solutions (third iteration)

Efficient
solution

Profit
Total 
time

Prod. xA Prod. xB Prod. xC Sales 1 2 3 4

s1'' 197.86 135.00 0.00 1.07 10.00 282.14 0 1 1 0

s2'' 167.38 130.58 0.00 3.54 6.75 275.00 1 0 0 1

s3'' 171.16 135.00 0.00 3.86 6.75 284.46 0 1 0 1

s4'' 164.97 135.00 1.20 2.74 6.75 275.00 1 0 0 1

s5'' 171.16 135.00 0.00 3.86 6.75 284.46 0 1 0 1

s6'' 197.46 135.00 0.08 1.00 10.00 281.54 0 1 1 0

s7'' 184.50 135.00 1.00 1.00 9.00 275.00 0 1 1 0

s8'' 174.92 135.00 1.00 2.00 7.83 275.83 1 0 0 1

s9'' 170.00 135.00 1.00 2.51 7.23 276.26 1 0 0 1

s10'' 170.00 134.43 1.00 2.42 7.29 275.00 1 0 0 1
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Selected solution (third iteration)

Efficient
solution

Profit Total time Prod. xA Prod. xB Prod. xC Sales Class

s1'' 197.86 135.00 0.00 1.07 10.00 282.14 *

s2'' 167.38 130.58 0.00 3.54 6.75 275.00 *

s3'' 171.16 135.00 0.00 3.86 6.75 284.46 *

s4'' 164.97 135.00 1.20 2.74 6.75 275.00 *

s5'' 171.16 135.00 0.00 3.86 6.75 284.46 *

s6'' 197.46 135.00 0.08 1.00 10.00 281.54 *

s7'' 184.50 135.00 1.00 1.00 9.00 275.00 selected

s8'' 174.92 135.00 1.00 2.00 7.83 275.83 *

s9'' 170.00 135.00 1.00 2.51 7.23 276.26 *

s10'' 170.00 134.43 1.00 2.42 7.29 275.00 *
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Decision rules explaining the choice

 r7: If profit  184.5 and xA  1, 

then product mix is selected (s7’’)

 r8: If xA  1 and xC  9, 

then product mix is selected (s7’’)
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Summing up …

Efficient
solution

Profit
Total 
time

Prod. xA Prod. xB Prod. xC Sales 1
Rule r1

2
Rule r2

3
Rule r3

4
Rule r4

s1'' 197.86 135.00 0.00 1.07 10.00 282.14 0 1 1 0

s2'' 167.38 130.58 0.00 3.54 6.75 275.00 1 0 0 1

s3'' 171.16 135.00 0.00 3.86 6.75 284.46 0 1 0 1

s4'' 164.97 135.00 1.20 2.74 6.75 275.00 1 0 0 1

s5'' 171.16 135.00 0.00 3.86 6.75 284.46 0 1 0 1

s6'' 197.46 135.00 0.08 1.00 10.00 281.54 0 1 1 0

s7'' 184.50 135.00 1.00 1.00 9.00 275.00 0 1 1 0

s8'' 174.92 135.00 1.00 2.00 7.83 275.83 1 0 0 1

s9'' 170.00 135.00 1.00 2.51 7.23 276.26 1 0 0 1

s10'' 170.00 134.43 1.00 2.42 7.29 275.00 1 0 0 1
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Reasons for choosing solution s7”

 S7” is good because profit140.5 & time150 & xB2 (decision rule r2)

 S7” is good because profit184.5 & time135 & xB1 (decision rule r3)

 S7” is not bad because profit>140.5 (decision rule r5)

 S7” is not bad because xA>0 (decision rules r5 & r6)

 S7” is not bad because time<140 (decision rule r6) 

 S7” is good because profit184.5 & xA1 (decision rule r7)

 S7” is good because xA1 & xC9 (decision rule r8)

Efficient
solution

Profit Total time Prod. xA Prod. xB Prod. xC Sales

s7'' 184.50 135.00 1.00 1.00 9.00 275.00



247247

 The method is based on ordinal properties of values of objective 

functions (the weakest possible) 

 At each step, the method does not aggregate the objective functions 

into a single value (no scalarization is involved)

 DM learns from association rules about the shape of Pareto-optimal set

 DM gives preference information by answering easy questions

in terms of sorting into good and bad, without using any technical 

parameters, such as weights, tradeoffs, thresholds,...

 Both association and decision rules are easily understandable and 

intelligible for DM („glass box”) – DM can identify solutions supporting 

each rule & see relationships between decision variables & objectives

 They enable argumentation, explanation and justification of the final 

decision as a conclusion of a decision process

Main features of the DRSA-IMO interactive method
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Decision rule approach
to interactive multiobjective optimization

under risk and uncertainty
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DRSA to IMO under uncertainty – portfolio selection

 Three securities: S1, S2, S3 , with probability distributions on returns

 Expected returns of the securities: 

R1=12%, R2=14%, R3=16%

 Matrix of Variance-Covariance of return

(yellow=variance; blue=covariance)

securities S1 S2 S3

S1 100 50 -20

S2 50 200 10

S3 -20 10 300
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E(RP)
expected 
return efficient

frontier

minimum
variance
portfolio

feasible frontier

individual
portfolios

σP
standard 
deviation 
of return

The efficient frontier of risky portfolios
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Efficient frontier of risky portfolios
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The trap of standard deviation as a risk measure

 Consider the coin tossing (heads or tails) game

 If the utility function used for evaluating the lotteries:

U(lottery) = mean  λ  std dev, and, e.g.,  λ=2,  then

U(lottery 1) = 1000=100,  U(lottery 2) = 150100=50, thus

paradoxically, lottery 1  lottery 2

heads tails

lottery 1 100 € 100 €

lottery 2 200 € 100 €

mean std dev

100 € 0

150 € 50
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Distribution of return for portfolio P

R75%(P) quantile

In 75% of best cases, portfolio P will give return at least E(Rp)0.67p  

or in 25% of worst cases, portfolio P will give return at most E(Rp)0.67p 

Pr(RP)

RP

P

E(RP )

standard deviation

25% -0.67 P

75%



R(P)=E[R(P)]+ [R(P)],  e.g., =75%



254

Portfolio w1 w2 w3 E[R(P)] [R(P)] R1%(P) R25%(P) R50%(P) R75%(P) R99%(P) Class

P1 0.39 0.29 0.32 13.86 8.43 33.50 19.51 13.86 8.21 -5.78 *

P2 0.21 0.22 0.57 14.71 10.64 39.49 21.84 14.71 7.58 -10.07 *

P3 0.01 0.48 0.51 15.01 11.39 41.55 22.64 15.01 7.37 -11.54 *

P4 0.61 0.04 0.35 13.50 8.30 32.82 19.05 13.50 7.94 -5.83 *

P5 0.43 0.39 0.18 13.52 8.58 33.51 19.27 13.52 7.77 -6.48 Good

P6 0.51 0.46 0.03 13.04 9.58 35.37 19.46 13.04 6.62 -9.29 *

P7 0.52 0.20 0.29 13.54 8.03 32.24 18.92 13.54 8.16 -5.16 Good

P8 0.54 0.04 0.42 13.75 8.70 34.03 19.58 13.75 7.92 -6.53 Good

P9 0.34 0.21 0.45 14.22 9.16 35.57 20.36 14.22 8.08 -7.13 *

P10 0.54 0.22 0.23 13.38 7.99 32.01 18.74 13.38 8.03 -5.24 Good

P11 0.60 0.15 0.25 13.28 7.94 31.78 18.60 13.28 7.97 -5.21 *

P12 0.53 0.19 0.28 13.5 8.00 32.14 18.86 13.5 8.14 -5.14 Good

P13 0.37 0.26 0.37 14 8.62 34.09 19.78 14 8.224 -6.09 Good

P14 0.21 0.34 0.46 14.5 9.79 37.30 21.06 14.5 7.94 -8.30 Good

P15 0.04 0.41 0.54 15 11.33 41.39 22.59 15 7.41 -11.39 *

P16 0 0.25 0.75 15.5 13.60 47.19 24.61 15.5 6.39 -16.19 *

P17 0 0 1 16 17.32 56.36 27.60 16 4.40 -24.36 Good

Set of representative efficient solutions (first iteration)
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Induction of DRSA decision rules wrt stochastic dominance

 19 rules were induced with the following frequency 

of the presence of objectives in the premise:

 R1%(P): 6/19

 R25%(P): 5/19

 R50%(P): 5/19

 R75%(P): 5/19

 R99%(P): 12/19
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The most interesting DRSA decision rules

 If R1%(P)32.01% and R99%(P)-5.24%, 

then portfolio is good (P7, P10, P12)

 If R25%(P)18.74% and R99%(P)-5.24%, 

then portfolio is good (P7, P10, P12)

 If R50%(P)13.38% and R99%(P)-5.24%, 

then portfolio is good (P7, P10, P12)

 If R75%(P)8.03% and R99%(P)-5.24%, 

then portfolio is good (P7, P10, P12)

 If R1%(P)33.51% and R99%(P)-6.48%, 

then portfolio is good (P5, P13)

 If R1%(P)34.03% and R99%(P)-6.53%, 

then portfolio is good (P8, P13)

 If R50%(P)16%, then portfolio is good (P17)

 If R50%(P)14.5% and R99%(P)-8.3%, 

then portfolio is good (P14)
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Selected decision rule and corresponding added constraints

 The DM selected the following rule as the most adequate

to his preferences:

If R75%(P)8.03% and R99%(P)-5.24%, 

then portfolio is good (P7, P10, P12)

 Added constraints to the portfolio selection problem:

 R75%(P) = E[R(P)]  0.67  σ [R(P)]  8.03%

 R99%(P) = E[R(P)]  2.33  σ [R(P)]  -5.24%
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Portfolio w1 w2 w3 E[R(P)] [R(P)] R1%(P) R25%(P) R50%(P) R75%(P) R99%(P) Class

P1’ 0.52 0.20 0.29 13.86 8.03 32.24 18.92 13.54 8.16 -5.16 *

P2’ 0.54 0.19 0.27 14.71 7.98 32.04 18.80 13.45 8.11 -5.13 Good

P3’ 0.54 0.20 0.26 15.01 7.98 32.05 18.80 13.45 8.10 -5.15 *

P4’ 0.50 0.23 0.27 13.50 8.05 32.29 18.93 13.53 8.14 -5.22 Good

P5’ 0.53 0.18 0.29 13.52 8.02 32.20 18.89 13.52 8.15 -5.16 Good

P6’ 0.57 0.16 0.27 13.04 7.96 31.93 18.72 13.39 8.06 -5.14 Good

P7’ 0.54 0.16 0.30 13.54 8.02 32.20 18.89 13.51 8.14 -5.18 *

P8’ 0.52 0.21 0.27 13.75 8.01 32.14 18.85 13.49 8.12 -5.17 *

P9’ 0.59 0.12 0.29 14.22 7.99 32.00 18.74 13.39 8.04 -5.22 *

P10’ 0.59 0.12 0.30 13.38 8.00 32.06 18.78 13.42 8.05 -5.23 *

P11’ 0.58 0.16 0.26 13.35 7.94 31.86 18.67 13.35 8.03 -5.16 *

P12’ 0.49 0.20 0.30 13.62 8.10 32.49 19.05 13.62 8.20 -5.24 Good

P13’ 0.57 0.17 0.27 13.40 7.96 31.94 18.73 13.4 8.07 -5.14 *

P14’ 0.55 0.18 0.27 13.45 7.97 32.03 18.79 13.45 8.11 -5.13 Good

P15’ 0.53 0.18 0.28 13.50 8.00 32.14 18.86 13.5 8.14 -5.14 *

P16’ 0.50 0.20 0.30 13.60 8.07 32.41 19.01 13.6 8.19 -5.21 Good

Set of representative efficient solutions (second iteration)



259

Induction of DRSA decision rules wrt stochastic dominance

 5 rules were induced with the following frequency 

of the presence of objectives in the premise:

 R1%(P): 1/5

 R25%(P): 1/5

 R50%(P): 1/5

 R75%(P): 1/5

 R99%(P): 1/5
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The most interesting DRSA decision rules

 If R1%(P)32.29%, 

then portfolio is good (P4', P12', P16')

 If R25%(P)18.93%, 

then portfolio is good (P4', P12', P16')

 If R50%(P)13.6%, 

then portfolio is good (P12', P16')

 If R75%(P)8.19%, 

then portfolio is good (P12', P16') 

 If R99%(P)-5.13%, 

then portfolio is good (P2', P14')
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Selected decision rule and corresponding added constraints

 The DM selected the following rule as the most adequate to his

preferences:

If R25%(P)18.93%, 

then portfolio is good (P4', P12', P16')

 Added constraint to the portfolio selection problem:

 R25%(P) = E[R(P)] + 0.67  σ [R(P)]  18.93%
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Portfolio w1 w2 w3 E[R(P)] [R(P)] R1%(P) R25%(P) R50%(P) R75%(P) R99%(P) Class

P1’’ 0.50 0.20 0.30 13.59 8.07 32.38 18.99 13.59 8.18 -5.20 *

P2’’ 0.49 0.20 0.30 13.62 8.09 32.48 19.04 13.62 8.20 -5.24 *

P3’’ 0.50 0.19 0.31 13.62 8.09 32.47 19.04 13.62 8.20 -5.23 *

P4’’ 0.51 0.20 0.29 13.55 8.03 32.27 18.93 13.55 8.17 -5.17 *

P5’’ 0.50 0.22 0.28 13.55 8.05 32.31 18.95 13.55 8.16 -5.20 *

P6’’ 0.50 0.21 0.28 13.55 8.04 32.29 18.94 13.55 8.16 -5.19 *

P7’’ 0.52 0.17 0.30 13.56 8.04 32.30 18.95 13.56 8.17 -5.19 *

P8’’ 0.50 0.21 0.29 13.59 8.07 32.38 18.99 13.59 8.18 -5.21 *

P9’’ 0.49 0.23 0.28 13.58 8.07 32.39 18.99 13.58 8.17 -5.23 *

P10’ 0.50 0.20 0.30 13.56 8.05 32.33 18.96 13.56 8.16 -5.21 *

P11’’ 0.52 0.19 0.29 13.55 8.03 32.26 18.93 13.55 8.17 -5.17 *

P12’’ 0.49 0.20 0.30 13.62 8.10 32.49 19.05 13.62 8.20 -5.24 Best

P13’’ 0.51 0.20 0.29 13.57 8.05 32.33 18.96 13.57 8.18 -5.19 *

P14’’ 0.5 0.2 0.3 13.60 8.07 32.41 19.01 13.60 8.19 -5.21 *

Set of representative efficient solutions (third iteration)
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Application of monotonic rules
to non-ordinal classification



 Attributes with unknown monotonic relationship w.r.t. decision

1. Ordinal (number-coded) attributes

• qualitative (small (1), medium (2), ..., large (k): e.g., size)

• quantitative (numerical: e.g., temperature)

Each ordinal attribute ai is replaced by 2 criteria: 

gain-type criterion q’i and cost-type criterion q’’i

2. Nominal (not ordered) attributes (blue, red, ..., white: e.g., color)

Each nominal attribute ai (taking 1 of k values, k>2) 

is replaced by 2k binary criteria:  for each h{1,…,k},

gain-type 0-1 criterion q’i(h) and cost-type 0-1 criterion q’’i(h)
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DRSA for classification with unknown monotonicity constraints



 Each ordinal (number-coded) attribute ai is replaced by 

gain-type criterion q’i and cost-type criterion q’’i

 Indiscernibility granules wrt a1  dominance cones wrt {q’1, q’’1}: 
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DRSA for classification with unknown monotonicity constraints



 Each one of k>2 values of a nominal attribute ai is replaced 

by 0-1 gain-type criterion q’i and 0-1 cost-type criterion q’’i

 Indiscernibility granules wrt a1  dominance cones wrt {q’1, q’’1}:
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DRSA for classification with unknown monotonicity constraints
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 Decision attribute d makes partition of U into a finite 

number of non-ordered decision classes Cl={Clt, t=1,...,m}

 Using DRSA, one approximates:

 in case of m=2 (binary classification): Cl1 and ¬Cl1=Cl2

 in case of m>2:  Clt and ¬Clt, for each t{1,…,k}, i.e.

1 2 3 1 1 1
, , ,..., , , ,..., , 

t t t m m
Cl Cl Cl Cl Cl Cl Cl Cl

  

t
Cl

Clt  Clt

DRSA for classification with unknown monotonicity constraints



 Induction of monotonic decision rules from rough approximations:

 positive decision rules, supported by objects 

if xq’1q’1rq’1 and xq’’1q’’1rq’’1 and xq’2q’2rq’2 and xq’’2q’’2rq’’2 and … 

xq’pq’prq’p and xq’’pq’’prq’’p, then x

 negative decision rules, supported by objects 

if xq’1q’1rq’1 and xq’’1q’’1rq’’1 and xq’2q’2rq’2 and xq’’2q’’2rq’’2 and … 

xq’pq’prq’p and xq’’pq’’prq’’p, then x

 Consistency of induced monotonic decision rules is controlled by 

consistency measure ε
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Induction of monotonic decision rules for non-ordinal classification

t
Cl

 Clt

t
P Cl

ε

 Clt

t
P Cl

ε 

t
Cl



Example of application of DRSA to non-ordinal data
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Example of application of DRSA to non-ordinal data



 Two decision rules are sufficient to cover all consistent objects from 

the table with binary classification „no” and „no” for recurrence

 Elementary condition V-s’ ≤ 0 from the rule 1) is be read as: 

„Volume is not small”. After returning to original scales:
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Example of application of DRSA to non-ordinal data



 Two decision rules are sufficient to cover all consistent objects from 

the table with binary classification „local” and „local” for recurrence

 Other two rules are sufficient to cover all consistent objects from 

the table with binary classification „other” and „other” for recurrence
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Example of application of DRSA to non-ordinal data
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Application of monotonic decision rules to non-ordinal classification

 Recommendation is based on a score coefficient that involves 

confidence and coverage of rules matching object x

 Let 1Clt ,…, kClt , be the rules matching x, 

||j|| is a set of objects with property j , j=1,…,k

 For classified object x, the score is calculated for each Clt, t=1,...,m  

     φ φ φ φ
1 1

   
t k t t k

score Cl ,x Pr |Cl Pr Cl |     L L

 
   

 
φ φ

φ φ φ φ
1

1 1

t k t

k t k t

t

Cl Cl
Pr |Cl conf Cl

Cl

   
      

L
L L

 
   

 
φ φ

φ φ φ φ
φ φ

1

1 1

1

t k t

t k k t

k

Cl Cl
Pr Cl | cov Cl

   
      

 

L
L L

L

…

…
…

…
…

…

…
…

…
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Application of monotonic decision rules to non-ordinal classification

 score(Clt)=score(¬Clt)

J.Błaszczyński, S.Greco, R.Słowiński: Multi-criteria classification – a new scheme for 
application of dominance-based decision rules. European J. Operational Research,
181 (2007) 1030-1044

 
  

 

1

Recommendation:    

where  

t

t t
t ,...,m

x Cl

Cl score Cl ,xargmax








 Classification of patient (x11) using the six rules

 The patient is covered by the following rules:

 The result of classification is as follows:
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Example of application of DRSA to non-ordinal data

No recurrence
for x11
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Examples of Applications of DRSA
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 The „at least” rules 

if xq1q1rq1 and xq2q2rq2 and … xqpqprqp, then xClasst


indicate opportunities for improving the assignment of object x

to Classt or better, if it was not assigned as high, and its score on 

q1,…,qp would grow to rq1,…,rqp

 The „at most” rules 

if xq1q1rq1 and xq2q2rq2 and … xqpqprqp, then xClasst


indicate threats for deteriorating the assignment of object x

to Classt or worse, if it was not assigned as low, and its score on 

q1,…,qp would drop to rq1,…,rqp

   
'U

,cer,cerincr 'S

NP
j

Pj
i

Pi
'SS'SS



















  




S.Greco, B.Matarazzo, N.Pappalardo, R.Słowiński: Measuring expected effects of interventions 
based on decision rules. J. of Experimental & Applied Artificial Intelligence, 17 (2005) 103-118

Intervention based on „at least” and „at most” rules
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Intervention based on „at least” and „at most” rules - example

 Example: customer satisfaction analysis by a Company

 44 questions and 3 classes of overall satisfaction: High, Medium, Low

Improvement from Low
to Medium or High satisfaction

Improvement from Low or 
Medium to High satisfaction

Deterioration from High or 
Medium to Low satisfaction

Deterioration from High
to Medium or Low satisfaction

Opportunities for improvement
of satisfaction

Threats of deterioration 
of satisfaction

Intervention based on „at least” and „at most” rules



Factors for Consumer Channel

B: Logistics
C: Customer

service

A: Product and 
product quality

F: Business 
relationship wih

the supplier

B1: Quality of changes 
implementing process

B2: Masterdata

B3: Availability of 
ordered products

B4: Accuracy of the 
delivery

B5: The punctuality of 
the date of the delivery

B6: Communication on 
delivery date changes

B7: Condition of 
delivered products

B8: Delivery documents

C1: Accessibility of KAM

C2: KAM's knowledge 
about products

C3: Professionalism of 
KAM

C4: Speed of response to 
problems

C5: Ease of order placing

C6: Speed of order 
processing

C7: Satisfaction with 
settlement of complaints

C8: Timely credit/debit 
payments

C9: Clarity of invoices 

C10: Accuracy of invoices

C11: Logic of shelf display 

C12: Stock replenishment 
adjusted to the speed of 
product rotation)

C13: Order/neatness of 
the shelf 

C14: Service 
merchandising costs 

A1: Width of product 
range

A2: Fulfilling Account’s 
shopper’s/the end 
consumer’s needs

A3: Innovative product 
introducing

A4: Quality of supplier's 
products from the 
consumer perspective

A5: Price/quality ratio 
of the light bulbs from 
the consumer 
perspective

A6: Packaging 

F1: Profit Margins

F2: Product price / 
performance ratio

F3: Focus on customer 
service

F4: Focus on end 
consumers 

F5: Supplier's market 
leadership

D1: Sufficient number of 
promotions offered by the 
supplier

D2: Contribution to 
Account's sales increase

D3: Contribution to 
Account's strategy for the 
category

D4: Availability of POS 
materials 

D5: Quality of POS 
materials

D6: MarCom support 
during product 
introductions 

D7: Shoppers shelf 
perception

D8: Optimizing the profit 
of the shelf

D9: Satisfying Account's 
strategy

D10: Possibility and 
effectiveness of training

D11: Effectiveness of 
product information 

D: Marketing 
support

44 factors organized
into 5 groups (A-D, F)



Decision rules induced from customer data structured by DRSA 

Certain at least rules

 If (F1  5)  (SATISFACTION  HIGH)

 If (A1  4) & (E2  5)  (SATISFACTION  HIGH)

 If (A3  5) & (C3  5)  (SATISFACTION  HIGH)

 If (A1  5) & (C4  5)  (SATISFACTION  HIGH)

 If (F1  4)  (SATISFACTION  MEDIUM)

 If (A1  4) & (C3  3)  (SATISFACTION  MEDIUM)

Certain at most rules

 If (C4  2)  (SATISFACTION  LOW) 

 If (F1  2)  (SATISFACTION  LOW)

 If (A1  2)  (SATISFACTION  MEDIUM)

 If (C1  2)  (SATISFACTION  MEDIUM)

 If (B2  2)  (SATISFACTION  MEDIUM)

 If (E3  3)  (SATISFACTION  MEDIUM)

 If (A3  4) & (A4  4)  (SATISFACTION  MEDIUM)

 If (A3  4) & (C3  4)  (SATISFACTION  MEDIUM)
301
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Intervention based on monotonic rules - example

At least rule:

If (A3 ≥ 4) & (C3 ≥ 3), then Satisfaction  Medium

incrSS’(Medium) =77%

Opportunity: if

 A3 ≥ 4, and

 C3 ≥ 3, then 

satisfaction of 77% of customers with Satisfaction = Low

will improve to Medium or High
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Intervention based on monotonic rules - example

At most rule:

If (A2 ≤ 3) & (E4 ≤ 4) , then Satisfaction  Low

incrSS’(Low) =89%

Threat: if

 A2 ≤ 3, and

 E4 ≤ 4, then 

satisfaction of 89% of customers with Satisfaction = High or Medium

will deteriorate to Low
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Intervention based on monotonic rules

 In practice, the choice of rules used for intervention can be supported 

by additional measures, like:

 length of the rule  the shorter the better,

 cost of intervention on attributes present in the rule,

 priority of intervention on some types of attributes, 

like: short-term before long-term actions
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Mobile Emergency Triage System - MET System

 MET – Mobile Emergency Triage

• Facilitates triage disposition for presentations of 

acute pain (abdominal and scrotal pain, hip pain)

• Supports triage decision with or without 

complete clinical information

• Provides mobile support through handheld 

devices

• http://www.mobiledss.uottawa.ca

W. Michalowski,  University of Ottawa

K. Farion,  Children’s Hospital of Eastern Ontario

Sz. Wilk, R. Słowiński,  Poznań University of Technology
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Trial Location

 Total pediatric population 

>400,000

 55,000 patient visits in the 

ER per year

 3 pediatric general surgeons 

(supported by emergency 

physicians and residents)
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Triage Process

Hospital/Clinic

Discharge

Surgery

Observation

Emergency Room (ER)

Observation/Clinic

Examination
(Specialist)

Consult

Discharge

Prioritization
(Triage nurse)

Disposition
(ED Physician)

Triage Diagnosis and treatment

Management

I Resuscitation Immediate

II Emergent  15 min.

III Urgent  30 min.

IV Less Urgent  1 hour

V Non Urgent  2 hours
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MET System – scrotal pain triage
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Decision Rules (examples)

 if (Age < 5 years) and (PainSite = lower_abdomen) 

and (RebTend = yes) and (4 < WBC < 12)

then (Triage = discharge)

 if (PainDur > 7 days) and (PainSite = lower_abdomen) 

and (37  Tempr  39) and (TendSite = lower_abdomen) 

then (Triage = observation)

 if (Sex = male) and (PainSite = lower_abdomen) 

and (PainType = constant) and (RebTend = yes) 

and (WBCC  12) then (Triage = consult)
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Wielkopolska Center 
of Telemedicine - WCT



WCT – goals of the project

 Standardization and increase of efficiency of communication 

between regional hospitals and reference clinics

 Increase of security of trauma patients with multiple injuries  

 Efficient use of scarce human resources (specialists-consultants)

 Increase of competence in 

regional hospitals of Wielkopolska

 Contribution to education 

of medical students



WCT – architecture

Structure of the system and available services of clinical decision support

Induction and application
of decision rules

(therapeutical & diagnostic)

Retrieval of similar cases

Indexing & retrieving
medical documents

Educational resources: 
video, publications, lectures, 

clinical pathways



Database of trauma patients

2503 verified cases



Database of trauma patients



Induction and application of decision rules

 Decision rules („if…, then…”) describe strong relationships and 

patterns discovered in verified database of trauma patients

 The rules are concise representation of knowledge discovered 

from data (important for education)

 Types of rules:

 Diagnostic – expected severity of injury on ISS scale

(Injury Severity Score)

 Therapeutic – suggested treatment of bone fractures 

(conservative treatment or surgery)



Hip 
fracture

Induction and application of decision rules

Rule matching

to patient #63



Patients matching with 
surgery

Matching rules



Matching rules

Patients matching with 
conservative treatment
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Criteria:
• volume of sound (X),

• timbre of sound (Y),

• ease of sound emission, 

• equal sound volume of strings (Z),

• accuracy of assembly,

• individual qualities

Ranking of violins based on the criterion X

Ranking of violins based on the criterion Y

Ranking of violins based on the criterion Z

> > > > >...

The violin’s acoustic data:
 individual sounds played on open strings, G,D,A,E,

 successive sounds of chromatic scale,

Sound recordingJury’s assessment

Acoustic features:
- power spectrum of chromatic scale sounds,

- wavelets,

- harmonic based spectral parameters (tristimuli, 

brightness, odd/even harmonics content...),

- psychoacoustic features

- cepstral coefficients.

Dominance-

based Rough 

Set Approach

Violinmakers competition
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Violinmakers competition – DRSA results

 Reconstructing the expert’s rankings of a set of 23 violins

 Three rankings: volume, timbre and inter-string equality

 Feature space - cepstral coefficients

Ranking 

according to

Best subset 

of acoustic features

Number 

of rules

Ranking fit

volume A14, E13, D12, G16 62 87%

timbre E13, D15, G4, G17, D5 99 92%

inter-string equality D20, D15, A24, D10 64 79%
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 An element of a light-bulb

Technical diagnostics – problem of short circuits in coil body
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 Problem– coil geometry failure – short circuits in coil body

Technical diagnostics – problem of short circuits in coil body
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 Production process steps

Technical diagnostics – problem of short circuits in coil body
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 Issues:

 Wire diameter (W ~20μm; Mo ~175μm)

 Batch throughput time (avg. 10 days)

 Many factors suspected for failure, including interactions

• Materials

• Subprocesses

• People

 Such coil geometry failure occurred first time in history

 Defects are hardly visible on machines

Technical diagnostics – problem of short circuits in coil body
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 Data table – 550 lots described by 10 attributes

Technical diagnostics – problem of short circuits in coil body
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 Results of the DRSA analysis:

 Quality of approximation of the classification into Yes/No failure: 100%

 Reducts: 61 with 8 to 5 attributes

 Adopted reduct (5 attributes): 

 I – ID of the 1st coiling machine

 L – ID of the 2nd coiling machine

 N – ID of the annealing furnace

 B – lot ID: day of the month

 V – lot ready: day of the week

Technical diagnostics – problem of short circuits in coil body
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 Rules:

If 1st coiling machine = 13,  then YES failure support = 8%

If 1st coiling machine = 48 & Furnace = 12 & Cutting machine = 3,  

then YES failure support = 12%

If Furnace = 12 & Cutting machine = 3 & Day = Friday, then YES failure

support = 9%

If Furnace = 5 & Cutting machine = 6, then NO failure

support = 14.67%

If Furnace = 5 & Month of the lot = 12, then NO failure

support = 20.22%

Technical diagnostics – problem of short circuits in coil body
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 Prediction of antimicrobial activity of quaternary chlorides by analysis 

of structure-activity-relationships (SAR)

 Complications after open-heart operations

 Colon cancer surgery

 Pediatric hip surgery, asthma treatment

 Prostate cancer teatment

 Brest cancer treatment

 HSV treatment of duodenal ulcer

 Extracorporeal shockwave lithotripsy (ESWL)

 Prediction of antifungal activity of gemini-imidazolium compounds

 Green chemistry classification of silver nanoparticles synthesis

 Comparative analysis of targeted metabolomics

 Triggerfish and cardiovascular data analysis of glaucoma patients

 …

Other applications of DRSA
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DRSA for group decision



DRSA for group decision

 Example: students described by scores (1–20) in mathematics (M), 

physics (Ph) and literature (L) are classified by 3 professors (P1, P2, P3) 

to preference ordered classes: Bad, Medium, Good

 Decisions of P1, P2, P3 have to be aggregated, so as to select

students which will be finally accepted for a graduate program

 The aggregate decision represents a consensus between professors

 Possible consenus: 

 2 professors classify as „at least Medium” + 1 professor classifies as „Good”

[Medium, Medium, Good], [Medium, Good, Medium], [Good, Medium, Medium]

 Resulting rules, e.g.:

if student x gained at least 15 in M, and at least 18 in L, then x is accepted

if student x gained at most 10 in M, and at most 13 in Ph, then x is not accepted
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Interpretation of recommendation provided by 
an MCDA method in terms of decision rules
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Illustrative example – ranking of students

Student Mathematics Physics Literature

S1 medium medium good

S2 good good medium

S3 medium good medium

S4 medium medium medium

S5 good good bad

S6 medium bad good
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 Pairwise comparisons of some students

 S2  S1

 S4  S5

 S5  S6

 Overall intensity of preference

 (S5,S6) (S2,S1)

 Intensity of preference relative to a single criterion

 (good, medium) (medium, bad)

Preference information given by the DM



sMathematic


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Dominance relation

Necessary preference

Possible preference

GRIP results
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Necessary ranking

GRIP results
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Representative

value

function

GRIP results
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Representative ranking

GRIP results
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Pair

(Si,Sj)

Maths

Si

Maths

Sj

Physics

Si

Physics

Sj

Literature

Si

Literature

Sj

Nec. 
Pref.

N

(S1,S1) medium medium medium medium good good N

(S1,S2) medium good medium good good medium N

(S1,S3) medium medium medium good good medium N

… … … … … … …

(S6,S4) medium medium bad medium good bad N

(S6,S5) medium good bad good good good N

(S6,S6) medium medium bad bad good good N

Illustrative example – ranking of students

Pairwise comparison table (PCT) and the necessary preference relation

resulting from GRIP – input data for DRSA
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 In case of no information about the intensity of preference:

Physics, Literature

Preference on single criteria for pairs of evaluations

good, bad

good, medium medium, bad

good, good medium, medium bad, bad

medium, good bad, medium

bad, bad
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 Use of preference information about intensity of preference

on a single criterion – the case of Mathematics:

(good, medium)                  (medium, bad)

Preference on single criteria for pairs of evaluations

good, bad

good, medium medium, bad

good, good medium, medium bad, bad

medium, good bad, medium

bad, bad



sMathematic
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(good, good) *Mathematics (medium, medium) *Mathematics (bad, bad)

(good, medium)                  (medium, bad)

Preference on single criteria for pairs of evaluations



sMathematic

good, bad

good, medium medium, bad

good, good medium, medium bad, bad

medium, good bad, medium

bad, bad
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 Intensity of preference wrt differences of evaluations on Mathematics

xMath=good & yMath=bad : x is much better than y

xMath=good & yMath=medium : x is better than y

xMath=medium & yMath=bad : x is weakly better than y

xMath= yMath: x and y are indifferent

Preference on single criteria for pairs of evaluations
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#1: if yPhys ≤ bad, then xN y

(S1,S6),(S2,S6),(S3,S6),(S4,S6),(S5,S6),(S6,S6)

#2: if xMath is better than yMath & xLit ≥ medium, then x N y,

(S2,S1),(S2,S3),(S2,S4),(S2,S6)

#3: if xPhys ≥ medium  & yPhys ≤ medium & xLit ≥ good, then x N y

(S1,S1),(S1,S4),(S1,S6)

#4: if xPhys ≥ medium  & yLit ≤ bad, then x N y,  

(S1,S5),(S2,S5),(S3,S5),(S4,S5),(S5,S5)

#5: if xMath is weakly better than yMath & xPhys ≥good & 

xLit ≥ medium  &  yLit ≤ medium, then x N y

(S2,S2),(S2,S3),(S2,S4),(S2,S5),(S3,S3),(S3,S4)

#6: if xPhys ≥medium  &  yPhys ≤medium  &  xLit ≥medium  &  yLit ≤medium, 

then x N y (S1,S4),(S2,S4),(S3,S4),(S4,S4)

#7: if xMath is weakly better than yMath & yLit ≤ bad, then x N y

(S2,S5),(S5,S5)

All rules representing the necessary preference relation
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#1: if yPhys ≤ bad, then xN y

(S1,S6),(S2,S6),(S3,S6),(S4,S6),(S5,S6),(S6,S6)

#2: if xMath is better than yMath & xLit ≥ medium, then x N y,

(S2,S1),(S2,S3),(S2,S4),(S2,S6)

#3: if xPhys ≥ medium  & yPhys ≤ medium & xLit ≥ good, then x N y

(S1,S1),(S1,S4),(S1,S6)

#4: if xPhys ≥ medium  & yLit ≤ bad, then x N y,  

(S1,S5),(S2,S5),(S3,S5),(S4,S5),(S5,S5)

#5: if xMath is weakly better than yMath & xPhys ≥good & 

xLit ≥ medium  &  yLit ≤ medium, then x N y

(S2,S2),(S2,S3),(S2,S4),(S2,S5),(S3,S3),(S3,S4)

#6: if xPhys ≥medium  &  yPhys ≤medium  &  xLit ≥medium  &  yLit ≤medium, 

then x N y (S1,S4),(S2,S4),(S3,S4),(S4,S4)

Minimal cover rules representing necessary preference relation
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 The DM adds new preference information:

 S1  S3

 New rule appears to cover the new necessary preference relation:

#8: if xMath is weakly better than yMath & xPhys ≥ medium  &  xLit ≥ good, 

then x N y

(S1,S1),(S1,S3),(S1,S4),(S1,S6)

Observation of new rules after addition of preference information



347

Il
lu

s
tr

a
ti
v
e

e
x
a
m

p
le

–
te

c
h
n
ic

a
l
ra

n
k
in

g
 o

f 
b
u
s
e
s

Bus Id MaxSpeed ComprPressure Blacking Torque SummerCons WinterCons OilCons HorsePower

b01 90 2 49 477 21 25 1 138

b02 85 2 52 460 21 25 1 130

b03 72 2 73 425 23 27 2 112

b04 88 2 50 480 21 24 1 140

b05 60 1 95 400 23 24 4 96

b06 78 2 63 448 21 26 1 120

b07 90 2 26 482 22 24 0 148

b08 65 2 67 402 22 23 2 103

b09 90 2 51 468 22 26 1 138

b10 76 2 65 428 27 33 2 116

b11 85 2 50 454 21 26 1 129

b12 85 2 58 450 22 25 1 126

b13 88 2 48 458 22 25 1 130

b14 75 2 64 432 22 25 1 114

b15 68 2 70 400 22 26 2 100

b16 88 2 44 478 21 25 0 138

b17 85 2 55 445 23 26 1 120

b18 90 2 40 480 22 25 0 139

b19 72 2 64 428 21 25 2 111

b20 75 2 60 440 22 26 1 120

b21 85 2 61 458 21 25 1 126

b22 68 2 88 422 22 25 3 108

b23 82 2 65 430 23 25 2 115

b24 90 2 38 482 20 24 0 146

b25 90 2 45 479 21 25 1 145

b26 90 2 34 486 21 25 0 148

b27 86 2 60 444 22 25 1 122

b28 88 2 50 475 22 25 1 142

b29 85 2 63 440 21 26 2 120

b30 72 2 85 420 22 25 3 110

b31 65 2 94 400 24 27 4 98

b32 87 2 60 460 22 25 1 131
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 Pairwise comparisons of some buses

 b04  b08

 b05  b22

 Overall intensity of preference

 (b01, b06)  (b20, b30)

 Intensity of preference on criterion MaxSpeed

 (b01, b04) MaxSpeed (b13, b15)

i.e.  (90, 88) MaxSpeed (88, 68)

Preference information given by the DM – 1st iteration
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Dominance relation – no preference information
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Necessary preference relation – 1st iteration
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Possible preference relation – 1st iteration
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Necessary ranking graph – 1st iteration



353

Representative value function – 1st iteration
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Representative ranking – 1st iteration
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All rules: 313 Minimal cover rules: 11

Rules induced from PCT representing necessary preference relation

1(SummerCons_x < 20) & (HorsePower_y < 146)  => (Rel = NEC)

2(Torque_x > 486 ) & ( WinterCons_y > 25 )  => (Rel = NEC)

3(SummerCons_y > 24) & (HorsePower_y < 115) & (WinterCons_x < 27)  => (Rel = NEC)

4(WinterCons_y > 27) & (Torque_x > 444)  => (Rel = NEC)

5(Torque_x>468)&(MaxSpeed_y<87)&(SummerCons_x<21)&(WinterCons_y>25)=> (Rel=NEC)

6(WinterCons_x < 24) & (HorsePower_y < 98)  => (Rel = NEC)

7(WinterCons_x < 23) & (HorsePower_y < 108)  => (Rel = NEC)

8(WinterCons_y > 33 ) & (HorsePower_x > 116) & (MaxSpeed_x > 76)  => (Rel = NEC)

9(Blacking_x < 26) & (SummerCons_y > 22) & (WinterCons_y > 24)  => (Rel = NEC)

10(MaxSpeed_x > 90) & (WinterCons_y > 26) & (SummerCons_y > 22)  => (Rel = NEC)

11(SummerCons_y > 23) & (Blacking_x < 55) & (WinterCons_y > 26)  => (Rel = NEC)
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All rules: 930 Minimal cover rules: 9

Rules induced from PCT representing possible preference relation

1( HorsePower_x > 146 )  => ( Rel = POSSIBLE )

2( WinterCons_x < 24 ) & ( WinterCons_y > 25 )  => ( Rel = POSSIBLE )

3( HorsePower_y < 110 ) & ( HorsePower_x > 110 )  => ( Rel = POSSIBLE )

4( WinterCons_y > 33 )  => ( Rel = POSSIBLE )

5( SummerCons_x < 21 ) & ( SummerCons_y > 22 )  => ( Rel = POSSIBLE )

6( HorsePower_y < 100 ) & ( WinterCons_x < 24 )  => ( Rel = POSSIBLE )

7( WinterCons_x < 23 ) & ( SummerCons_y > 22 )  => ( Rel = POSSIBLE )

8( MaxSpeed_y < 76 ) & ( HorsePower_x > 114 )  => ( Rel = POSSIBLE )

9( Blacking_y > 61 ) & ( Blacking_x < 61 )  => ( Rel = POSSIBLE )
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 The DM adds new preference information:

 b05  b15

Preference information given by the DM – 2nd iteration
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Necessary preference relation – 2nd iteration
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Necessary preference relation – 1st iteration
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Possible preference relation – 2nd iteration
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Possible preference relation – 1st iteration



362

Necessary ranking graph – 2nd iteration
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Representative value function – 2nd iteration



364

Representative ranking – 2nd iteration
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All rules: 426 (313) Minimal cover rules: 11 (4,5,6,8,9,10 are new)

Rules induced from PCT representing necessary preference relation

1(SummerCons_x < 20) & (HorsePower_y < 146)  => (Rel = NEC)

2(Torque_x > 486 ) & ( WinterCons_y > 25 )  => (Rel = NEC)

3(HorsePower_y < 108) & (WinterCons_x < 23)  => (Rel = NEC)

4(WinterCons_y > 27) & (Blacking_x < 58)  => (Rel = NEC)

5(HorsePower_y < 100) & (Blacking_x < 73) & ( SummerCons_x < 22)  => ( Rel = NEC)

6(Torque_x>468)&(SummerCons_x<21)&WinterCons_y>24)&(MaxSpeed_y<87)=> (Rel=NEC)

7(WinterCons_y > 33) & (HorsePower_x > 116) & (MaxSpeed_x > 76)  => (Rel = NEC)

8(WinterCons_x < 24) & (HorsePower_y < 100)  => (Rel = NEC)

9(OilCons_y > 3) & (WinterCons_x < 24) & (HorsePower_y < 108)  => (Rel = NEC)

10(Blacking_x < 26) & (SummerCons_y > 22) & (WinterCons_y > 24)  => (Rel = NEC)

11( SummerCons_y > 22) & (WinterCons_y > 26) & (MaxSpeed_x > 90)  => (Rel = NEC)
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All rules: 904 (930) Minimal cover rules: 9 (2,4,6,8 are new)

Rules induced from PCT representing possible preference relation

1( HorsePower_x > 146 )  => ( Rel = POSSIBLE )

2( SummerCons_y > 24 )  => ( Rel = POSSIBLE )

3( HorsePower_x > 110 ) & ( HorsePower_y < 110 ) => ( Rel = POSSIBLE )

4( HorsePower_y < 100 ) & ( OilCons_x < 2 )  => ( Rel = POSSIBLE )

5( SummerCons_x < 21 ) & ( SummerCons_y > 22 )  => ( Rel = POSSIBLE )

6( WinterCons_x < 24 ) & ( SummerCons_y > 23 )  => ( Rel = POSSIBLE )

7( WinterCons_x < 23 ) & ( SummerCons_y > 22 )  => ( Rel = POSSIBLE )

8(WinterCons_x < 24)&(SummerCons_x < 22)&(WinterCons_y > 25)=> (Rel = POS)

9( Blacking_x < 61 ) & ( Blacking_y > 61 ) => ( Rel = POSSIBLE )
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 Observe the pair: (b11, b05)

 In the 1st iteration: b11 P b05 (covered by 459 possible rules)

 In the 2nd iteration: b11 N b05 (covered by 97 necessary rules

Rules changing from possible to necessary in new iteration

Strength Minimal cover rules supported by (b11, b05)

266 ( Blacking_x < 61 ) & ( Blacking_y > 61 ) => ( Rel = POSSIBLE )

264 ( MaxSpeed_y < 76 ) & ( HorsePower_x > 114 )  => ( Rel = POSSIBLE )

240 ( SummerCons_x < 21 ) & ( SummerCons_y > 22 )  => ( Rel = POSSIBLE )

162 ( HorsePower_x > 110 ) & ( HorsePower_y < 110 )  => ( Rel = POSSIBLE )

72 (Blacking_x<73)&(SummerCons_x<22)&(HorsePower_y<100)=> (Rel = NEC)
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 1st iteration

•

•

 2nd iteration

Analysing the strongest rules covering the pair (b11, b05)
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 DRSA for Choice and Ranking with multi-graded preference relations

 DRSA as a Way of Handling Fuzzy-Rough Hybridization

 DRSA for Case-Based Reasoning

 DRSA for Decision Under Uncertainty and Time Preference

 DRSA for Ordinal Classification with Imprecise or Missing Evaluations 

and Assignments

 DRSA for Hierarchical Structure of Attributes and Criteria

 DRSA for Financial Portfolio Decision

 DRSA for Customer Satisfaction Analysis

 Robustness analysis for multiple criteria ranking and choice

 Robustness analysis for decision under uncertainty and group decision

Other methodological extensions of DRSA
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Conclusions

Additional material
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 Monotonic "if..., then..." decision rules give account of most complex 

interactions among attributes, require weaker axioms than other

preference models, and can represent inconsistent preferences

 Heterogeneous information (attributes, criteria) and attribute scales 

(ordinal, cardinal) can be handled by DRSA.

 DRSA exploits ordinal information only, and decision rules do not convert 

ordinal information into numeric one.

 DRSA supplies useful elements of knowledge about decision situation:

 certain and doubtful knowledge distinguished by lower and upper appx.

 relevance of particular attributes and information about their interaction,

 reducts & core of attributes conveying important knowledge contained in data,

 decision rules can be used for explanation of past decisions, for decision

support and for strategic interventions.

 DRSA has sound theoretical foundations (bipolar algebra, bitopology, 

Bayesian confirmation theory)

Conclusions
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Software available on the web

ROSE

ROugh Set data Explorer

http://idss.cs.put.poznan.pl/site/rose.html

jMAF &  jRank

Decision Support Tools for Rule-based Analysis and Solving

of Multi-Attribute and Multi-Criteria Decision Problems

http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html

http://www.cs.put.poznan.pl/mszelag/Software/jRank/jRank.html

http://idss.cs.put.poznan.pl/site/software.html

THANK YOU!

http://idss.cs.put.poznan.pl/site/rose.html
http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
http://www.cs.put.poznan.pl/mszelag/Software/jRank/jRank.html
http://idss.cs.put.poznan.pl/site/software.html
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Thank you
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Algebra for DRSA

Additional material
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Algebraic models for DRSA: bipolarity

 In Classical Rough Set Theory, one approximates subsets of U, e.g.:

 bad objects,

 medium objects,

 good objects.

 In Dominance-based Rough Set Theory, one approximates

unions of ordered subsets of U – downward unions, e.g.:

 at most bad objects (i.e., bad or worse objects)

 at most medium objects (i.e., medium or worse objects)

 and upward unions, e.g.:

 at least medium objects (i.e. medium or better objects)

 at least good objects (i.e. good or better objects) 

bad mediumgood... ...

U

bad medium good... ...   
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Algebraic models for DRSA: bipolarity

 Important remarks

 Lower & upper approximations for downward unions are different 

operators from lower & upper approximations for upward unions

 The complement of a downward union is an upward union,

and vice versa, e.g.:

bad medium good... ...   
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 In general, given a finite set of objects (universe) U, we consider

a partial preorder relation R on U (i.e., R is reflexive and transitive)

 R can be a dominance relation w.r.t. a subset of properties

 For any object yU, the elementary sets (granules) used for building

rough approximations are:

R+(y)=xU: xRy and R(y)=xU: yRx

(e.g., positive and negative dominance cones)

Bipolar disjoint representation using DRSA
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 For every set XU, we define its upward lower approximation

and its upward upper approximation :

 Analogously, we define downward lower approximation

and downward upper approximation of set XU :

      
 

    

: 

: 

R X x U R x X

R X x U R x X

 

 

  

    

Bipolar disjoint representation using DRSA

      
 

    

: 

: 

R X x U R x X

R X x U R x X

 

 

  

    



Bipolar disjoint representation using DRSA

 According to Rough Set philosophy, each concept X is represented

by the pair (I, E), where

 I (the interior)  is the lower approximation of set XU

 E  (the exterior)  is the complement in U of the upper approx. of X

I is the set of objects that certainly belong to the concept

E is the set of objects that certainly do not belong to the concept
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 The algebraic structures for DRSA are based on representation

of the approximations of X in terms of pairs (I+, E+)  and  (I, E),

called bipolar disjoint representation (BDR):

positive interior and exterior of concept X: 

negative interior and exterior of concept X: 

Bipolar disjoint representation using DRSA

       
 

 ,    I X R X E X U R X
   

       
 

 ,    I X R X E X U R X
   



Bipolar disjoint representation using DRSA

 In the context of BDR, union and intersection of sets is represented by 

the operation of join  and meet 

 The same formula holds for pairs (I+, E+)  and  (I, E)

                  

                  

, , ,  

, , ,  

I X E X I Y E Y I X I Y E X E Y

I X E X I Y E Y I X I Y E X E Y

   

   



Bipolar disjoint representation using DRSA

 Moreover, one can use different bipolar negations, e.g.:

 Kleene complementations ’+ : + and ’ : +

 Brouwer complementations + : + and  : +

         
         

, , 

, , 

I X E X ' E X I X

I X E X ' E X I X

    

    





         
         

,  , 

,  , 

I X E X E X U E X

I X E X E X U E X

    

    

 

 
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Algebraic models for DRSA: bipolarity

 A typical algebra for Classical Rough Set Theory:

 System ,,,’,,0,1

is a Brouwer-Zadeh distributive lattice

if the following properties (required by rough approximations) hold …

 A typical algebra for Dominance-based Rough Set Theory:

 System ,+,,,,’+, ’,+,,0,1> 

is a bipolar Brouwer-Zadeh distributive lattice

if the following properties (required by DRSA approximations) hold…
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Algebraic models for DRSA: bipolarity

 One can generalize all algebra models proposed for Classical Rough Sets

to Dominance-based Rough Sets:

 Nelson algebra  Bipolar Nelson algebra 

 Heyting algebra   Bipolar Heyting algebra

 Wajsberg algebra  Bipolar Wajsberg algebra

 Stone algebra  Bipolar Stone algebra

 Łukasiewicz algebra  Bipolar Łukasiewicz algebra 

 Brouwer-Zadeh algebra  Bipolar Brouwer-Zadeh algebra

 ...

 These algebra models give elegant representations of basic properties 

of Dominance–based Rough Sets

S.Greco, B.Matarazzo, R.Słowiński: Algebra and Topology for Dominance-based Rough Set 
Approach. [In]: Z.W.Raś, L.-S.Tsay (eds.), Advances in Intelligent Information Systems, 
Studies in Computational Intelligence, vol. 265, Springer, Berlin, 2010, pp. 43-78



385

Bipolar de Morgan Brouwer-Zadeh lattice as a model for DRSA

 A proper algebraic structure for ordinal classification with monotonicity

constraints is a bipolar de Morgan Brouwer-Zadeh lattice

where

 =(I,E): I,EU and IE= - set of concepts

+=(I,E): XU such that I=I+(X), E=E+(X) - positive concepts

=(I,E): YU such that I=I(Y), E=E(Y) - negative concepts

S.Greco, B.Matarazzo, R.Słowiński: The bipolar complemented de Morgan Brouwer-Zadeh

distributive lattice as an algebraic structure for the Dominance-based Rough Set Approach. 

Fundamenta Informaticae, 115 (2012) 25–56

S.Greco, B.Matarazzo, R.Słowiński: On Topological Dominance-based Rough Set Approach. 

Transactions on Rough Sets XII (LNCS series, vol. 6190), Springer, Berlin, 2010, pp.21-45.

<,+,-,,,’+, ’-,+,-,0,1>
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Bipolar quasi Brouwer-Zadeh Distributive Lattices (1)

 A system <,+,-,,,’+, ’-,+,-,0,1> is a bipolar quasi Brouwer-Zadeh

distributive lattice if the following properties hold:

 <,,,0,1> is a distributive lattice

 <+,,,0,1>, <-,,,0,1> are distributive lattices with +,-

 ’+: +- and ’-: -+ are bipolar Kleene complementations, that is 

for all a,b+ and c,d-

 (K1b) a’+’- =a, c’-’+ =c

 (K2b) (a  b)’+ =a’+ b’+, (c  d)’- =c’-  d’-

 (K3b) a  a’+  b  b’+, c  c’-  d  d’
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Bipolar Quasi Brouwer-Zadeh Distributive Lattices (2)

 +:+- and -:-+ are bipolar Brouwer complementations, that is 

for all a,b+ and c,d-:

 (B1b) a  a+- =a, c  c-+ =c

 (B2b) (a  b)+=a+ b+ , (c  d)+ =c+ d+ 

 (B3b) a  a+=0, c  c-=0

 (win-b) for all a+ and b-, a+ a’+ and b- b’-

 A bipolar quasi Brouwer-Zadeh lattice is a bipolar Brouwer-Zadeh

lattice if stronger interconnection rule is satisfied: 

 (in-b) for all a+ and b-, a+- = a+’- and b-+ = b-’+
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Bipolar Brouwer-Zadeh Distributive De Morgan Lattices

 A bipolar Brouwer-Zadeh lattice is a bipolar de Morgan Brouwer-

Zadeh lattice if it satisfies the -de Morgan property:

 (B2a-b) for all a,b+ and c,d-

 (ab)+=a+b+, (cd)-=c-d-
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Topology for DRSA
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Bitopological spaces

 A bitopological space is a triple (X,1,2) where X is a set and 1 and 2 

are two topologies (Kelly1963).

 Using 1 and 2, one can define two interior operators I1 and I2 

 Then, the bitopological space can be represented by the triple (X,I1,I2)

 From interior operators I1 and I2 one can be define  closure operators 

C1 and C2 in the usual way: for all AX

C1(A)=XI2(XA), C2(A)=XI1(XA)

 A bitopological space satisfies the biclopen sets property if for all AX

C1(I1(A))=I1(A), C2(I2(A))=I2(A), I1(C1(A))=C1(A), I2(C2(A))=C2(A)
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 Theorem (Bezhanishvili et al. 2010) If (X,I1,I2) is a bitopological space

having biclopen sets property, then there exists a partial preorder 

in X such that there exist two bases for 1 and 2 , resp.,

{{yX: yx}: xX}{}, {{yX: xy}: xX}{}.

 DRSA: (U, R+,R) is a bitopological space and the two bases for R+, R: 

{{R+(x): xU}{}}, {{R(x): xU}{}}.

 Lower & upper appx of DRSA are interior & closure operators of (U,R+,R)

 (U,,R) with R the partial preorder (dominance) relation of DRSA and 

={R+(x): xU}{R(x): xU}{}

can also be seen as a Priestley topological space (Priestley 1971)

Bitopological spaces and DRSA
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DRSA as a way of handling
Fuzzy-Rough Hybridization



 Rough set concept refers to some ideas of Gottlob Frege (vague concepts), 

Gottfried Leibniz (indiscernibility), George Boole (reasoning methods), 

Jan Łukasiewicz (multi-valued logic), and Thomas Bayes (inductive reasoning)

 Gottfried Leibniz (Leibniz’s law)

„identity of indiscernibles” is a principle of analytic ontology :

if x and y are indiscernible, then x has the same properties as y (i.e. x=y)

the converse principle is called „indiscernibility of identicals”:

if x has the same properties as y (i.e. x=y), then x and y are indiscernible

 Rough set theory by Zdzisław Pawlak uses a weaker Leibniz’s law to classify

objects falling under the same concept – weakened „identity of indiscernibles”:

if x and y are indiscernible, then x and y belong to the same class

„Indiscernibility of identicals” cannot be reformulated analogously, because it is

not true that if x and y belong to the same class, then x and y are indiscernible
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DRSA as a proper way of handling graduality in Rough Set Theory

 From the viewpoint of granular computing, „class” is a synonym of „granule” : 

„if x and y are indiscernible,

then x and y belong to the same classification granule”

 The relaxation in the consequence of the „identity of indiscernibles” implicitly

implies a relaxation in the antecedent : 

„if x and y are indiscernible taking into account a given set of properties,

then x and y belong to the same classification granule”

 This weakening in the antecedent means also that the objects indiscernible with 

respect to a given set of properties can be seen as a granule:

„if x and y belong to the same granule wrt a given set of properties,

then x and y belong to the same classification granule”

 Rough set theory needs a still weaker form of „identity of indiscernibles”



 According to Gottlob Frege:

„A concept must have a sharp boundary. 

To the (vague) concept without a sharp boundary there would correspond

an area that had not a sharp boundary-line all around”

 Following this intuition, one can further reformulate the „identity of 

indiscernibles”:

„if x and y are indiscernible, then x and y should belong to the same class”

This formulation implies that there is an inconsistency if x and y are

indiscernible and they belong to different classes

 In terms of granular computing:

„if x and y belong to the same granule wrt a given set of properties,

then x and y should belong to the same classification granule”

 This corresponds exactly to the rough set concept proposed by Pawlak
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 The Pawlak’s rough set should be completed, however, by referring to 

another idea, given by George Boole, and concerning presence (truth) 

or absence (falsity) of a property for an object.

 Jan Łukasiewicz has enriched the 0-1 truth values by considering gradual truth

in many-valued logic – thus, the property can be true to some degree

 The Łukasiewicz’s idea of graduality has been reconsidered and fully exploited

by Lotfi Zadeh within fuzzy set theory, where graduality concerns membership

to a set
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 Any proposal of putting rough sets and fuzzy sets together can be seen as a 

reconstruction of the rough set concept, where the Boole’s binary logic is

substituted by Łukasiewicz’s multi-valued logic, such that the Leibniz’s identity of 

indiscernibles and the Frege’s intuition about vagueness are combined through the

idea that a property is true to some degree:

„if the degree of each property for x is at least as high as the degree for y,

then x should belong to the considered class in degree at least as high as y”

 This formulation is perfectly concordant with the Dominance-based Rough Set 

Approach – it handles the monotonic relationship in exacly the same way
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DRSA as a proper way of handling graduality in Rough Set Theory

 In terms of granular computing, the hybridized concept of rough-fuzzy set, 

which is concordant with DRSA, can be summarized as:

„if x belongs to the granule defined by considered properties not less than y,

then x should belong to the classification granule in degree at least as high as y”
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Remarks on fuzzy set extensions of rough sets (before DRSA)

 Nakamura & Gao 1991; Dubois & Prade 1992; Lin 1992; Słowiński 1995; Pal 1996;

Słowiński & Stefanowski 1996; Yao 1997; Cattaneo 1998; Morsi & Yakout 1998; 

Greco, Matarazzo & Słowiński 1999, 2000; Thiele 2000; Inuiguchi & Tanino 2002;

Polkowski 2002, Greco, Inuiguchi & Słowiński 2002, Radzikowska & Kerre 2003; 

Wu, Mi & Zhang 2003; ... 

 The fuzzy extensions of Pawlak’s definition 

of lower and upper approximations use fuzzy connectives

(t-norm, t-conorm, fuzzy implication)

 In general, fuzzy connectives depend on cardinal properties of 

membership degrees, i.e. the result is sensitive to order preserving 

transformation of membership degrees
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An example of a fuzzy logic operator: the t-conorm

 Within fuzzy logic t-conorm corresponds to „or” operator in classical 

logic.

 A t-conorm is a function T*:[0,1][0,1][0,1] such that if 

 credibility of proposition p is  [0,1], and  

 credibility of proposition q is  [0,1]

then  

 credibility of proposition pq is T*(, ).

 E.g., using the t-conorm of Łukasiewicz credibility of proposition pq is 

T*(,) = min{+, 1}.

 Formally a t-conorm is a function T*:[0,1][0,1][0,1] being non 

decreasing in its two arguments, associative, commutative and such 

that for all [0,1], T*(,1)=.
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Remarks on fuzzy extensions of rough sets

 Consider the t-conorm of Łukasiewicz: T*(,) = min{+, 1}, the 

following values of arguments:

=0.5, =0.3, =0.2, =0.1

and their order preserving transformation:

’=0.4, ’=0.3, ’=0.2, ’=0.05.

The values of the t-conorm are:

T*(,) = 0.6 > T*(,) = 0.5

T*(’,’) = 0.45 < T*(’,’) = 0.5

 The order of the results has changed after the order preserving 

transformation of the arguments. 

 This means that the Łukasiewicz t-conorm takes into account not only 

the ordinal properties of the membership degrees, but also their 

cardinal properties.
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Which t-conorm to choose? Is there some „right” one?

 Max: T*(,) = max{, } ?

 t-conorm of Łukasiewicz: T*(,) = min{+, 1} ?

 Probabilistic sum: T*(,) = + ?

 Drastic t-conorm: T*(,) =

 Nilpotent maximum: T*(,) =

 Frank t-conorm: T*(,) =

 …
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Remarks on fuzzy extensions of rough sets

 A natural question arises: is it reasonable to expect from 

membership degree a cardinal meaning instead of ordinal only? 

 In other words, is it realistic to think that a human is able to express    

in a meaningful way not only that

„object x belongs to fuzzy set X more likely than object y” 

but even something like

„object x belongs to fuzzy set X two times more likely than object y”?

S.Greco, M.Inuiguchi, R.Słowiński: Fuzzy rough sets and multiple-premise gradual decision 

rules. International Journal of Approximate Reasoning, 41 (2005) 179-211
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Dominance-based (monotonic) Rough Approximation of a Fuzzy Set

 The dominance-based rough approximation of a fuzzy set avoids 

arbitrary choice of fuzzy connectives and not meaningful operations 

on membership degrees

 Approximation of knowledge about Y using knowledge about X is based 

on positive or negative relationships between premises and conclusions,

called gradual rules, i.e.:

i) „the more x is X, the more it is Y” (positive relationship)

ii) „the more x is X, the less it is Y” (negative relationship)

 Example: 

„the larger the market share of a company, the larger its profit”

„the larger the debt of a company, the smaller its profit”
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 These monotonic relationships have the form of gradual decision rules:

„if a car is speedy with credibility at least 0.8 

and it has high fuel consumption with credibility at most 0.7, 

then it is a good car with a credibility at least 0.9”

„if a car is speedy with credibility at most 0.5 

and it has high fuel consumption with credibility at least 0.8, 

then it is a good car with a credibility at most 0.6”

 The syntax of gradual decision rules is based on monotonic relationships 

between degrees of credibility, as in monotonic decision rules induced

from preference-ordered data. 

 This explains why one can build a fuzzy-rough approximation using DRSA

Dominance-based (monotonic) Rough Approximation of a Fuzzy Set



406

DRSA as an approach to computing with words

 Classical fuzzy set approach to computing with words:

i) qualitative inputs, such as „very bad”, „bad”, „medium”, „good”, „very good”

ii) numerical codification of the inputs (fuzzification): e.g.

„very bad”=0, „bad”=0.25, „medium”=0.5, „good”=0.75, „very good”=1 

iii) algebraic operations on numerical codes : e.g.

„comprehensive evalaution of a student good in mathematics and medium in

physics”=(0.75+0.5)/2=0.625

iv) recodification in qualitiative terms of the calculation result (defuzzification):

e.g., 0.625=between medium and good

 Dominance-based Rough Set Approach does not need fuzzification 

and defuzzification: e.g.

„if the student is at least medium in Mathematics and

at least medium in Literature, then the student is at least medium” 


