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Ordinal regression and inductive learning approaches




Problem statement — multicriteria choice, ranking and sorting

m Consider a finite set A of actions (alternatives, solutions, objects)
evaluated by m criteria from a consistent family F={g4,...,9,};

I={1,...m}

m The only objective information is dominance relation in set A

gi(x)




Bernard Roy on the constructive approach of MCDA

"MCDA must be based on models that are, at least partially,
co-constructed through interaction with the decision maker.
The co-constructed model must be a tool for looking deeper
into the subject, exploring, interpreting, debating and even

arguing.”(Roy 2010)



Bernard Roy on the recommendation in MCDA

“"The content of the recommendation may be only the fruit of
a conviction constructed in the course of a process
necessitating multiple interactions, bringing into play a variety

of actors involved in a complex managerial environment.”

(Roy 1993)”



Taxonomy of Decision Problems




P, : Choice problem (optimization)

A Chosen subset A’
of best actions

Rejected subset
A\A' of actions



Py 1 Classification to preferentially non-ordered classes
(classification in the strict sense)

A X X X
/ Class 1
X X
XX XX
Class 2
XX

Class p

XXX
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Pg> Classification to preferentially ordered classes (sorting)

A X X X
XXXX
X X
XXX

Class 1 -~ Class 2 - ... = Class p

Class 1

Class 2

Class p
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Classification in the strict sense — example of traffic signs

Traffic sign || Shape (S) | Primary Color (PC) | Class
a) @ triangle yellow W
b) circle white I
c) . circle blue I
d) | "\ | circle blue O

W: Warning; I: Interdiction; O: Obligation
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Sorting — example of multiple criteria sorting of students

Student | Mathematics (M) | Physics (Ph) | Literature (L) | Overall class
S1 good medium bad bad

S2 medium medium bad medium

S3 medium medium medium medium
S4 medium medium medium good

S5 good medium good good

S6 good good good good

S7 bad bad bad bad

S8 bad bad medium bad
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Py: Ordering problem (ranking)

Partial or complete ranking
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Multiattribute Utility Theory
(MAUT)
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Setting

= N={1,2,...,n} set of attributes
m X, : set of possible values of the i-th attribute

m X=1Xi = X x Xy % xXq={(Xq0s Xn)iX1€Xy,0p XpeXy}i set of
all conceivable alternatives

s X includes the alternatives under study. . . and many others!
m >: weak preference relation on X such that for all x,yeX
X >y
means
«X is at least as good as y»
B X-Y < X =Y and noty > x (which means «x is preferred to y»)

B X~y & X>Yyandy>x (which means «x and y are indifferent»)
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Marginal preferences

m J={i,...,ik}cN
s Xy= X0 =X x X e xX={(Kigyeeey X)X, €Xigy0p XX 31 SEL

ied
of all conceivable alternatives with respect to attributes
from ]

B X,= g Xi :set of all conceivable alternatives with respect

to attributes different from J

= >;: weak marginal preference relation on X; such that for all
XJIYJEXJ

Xy =1 Y; < (X5,2.5) = (Y;y,2,) for all z_;eX,
which means
«X; is at least as good as y;»

= In case J={i}, we write > instead of >-;,.
17



Additive value function model

= Forall all x,yeX

X-Yy & Z:ui(xi)2 Zui(yi)
i=1 =1
with u;:X;—>R.

= Sometimes a simplified model is considered: if XcR" and for all
attributei e N

Xi2Yi < X =Y,
m For all x,yeX
n n
X>Y < ZWiXi 2 ZWiYi
i1 i1

with w; non negative for all i € N.
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Independence

> is independent for JcN if for all x;,y;eX;
[(X5,2.;) = (Y;,Z.;) for some z_;eX 4]
U
[(X5,2;) = (Y;,2.;) for all z_;eX,]

If = is independent for all JeN, with J non-empty, we say that
= is independent.

If = is independent for all {i}, i € N, we say that
- is weakly independent.

If = is weakly independent, then dominance arguments apply,
i.e. for all x,yeX

[X; = y; for all ieN]= x >y

19



Independence: illustrative example

Z-J I} Z ’—J XJ / YJ
A A
[ ) | ]
Students Mathematics Physics Literature
S1 Good Medium Bad
S2 Good Bad Medium
S3 Medium Medium Bad
S4 Medium Bad Medium

If S2-S1, then S4-S3

If (x; z5)>=(y; z,), then (x; z';) = (y; Z',)



Independence: illustrative example

Students Mathematics Physics Literature
S1 Good Medium Bad
S2 Goo Bad Medium
S3 Medium Medium Bad
S4 ediu Bad Medium

S2 - S1 S4 - S3

AW
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Is independence a reasonable hypothesis?

Dinner Main course Wine
D1 Meat White
D2 Meat Red
D3 Fish White
S4 Fish Red

D2 - D1 and D3 ~ D4



Is independence a reasonable hypothesis?

Dinner Main course Wine
D1 Meat White
D2 Meat Red
D3 | Fish White
S4 Fish Red

D2 - D1>{D4 . D3



Basic results for Multiattribute Utility Theory

If
= restricted solvability holds,

= each attribute is essential,

then the additive value function holds if and only if

= is an independent weak order satisfying the
Thomsen and the Archimedean conditions.

In case there are more than two attributes, Thomsen
condition can be forgotten.
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How to assess a multiattribute value function?

Many methods:
- Direct rating
- Bisection techniques

- ... (e.g. Peter C. Fishburn , Methods of Estimating
Management Science, 13(7), 1967, 435-453, where
24 methods are presented)
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How to assess tradeoff ?

m Consider the simplified model
X>Yy & ZWiXi ZZWiyi
=1 =1
= For xeX and i,j € N, consider k;; such that

(X1, X5,eeep Xi+ 1,00, Xipory X)) ~ (X, X5, 000, Xy 00, X

_]I + kij""’ Xn)

]
m We get
WX +WoXo+. WX+ 1)+ WX+ WX

WX +WoXo+. WX+ W (X K) +. WX

m From which...
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How to assess tradeoff ?

m From which

and therefore
Kij= W; / W;

= This means that the weights in the MAUT model are related to
the concept of tradeoff (I can renounce to k;; on attribute j, in
order to increase one unit on attribute i).

= Observe that coherence condition is that for all i,j,1eN
kij= K x klj

(Wi /wy=w;/w x w/w)
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Holistic preference information

Psychologists confirm that Decision Makers (DMs) are more confident
exercising their decisions than explaining them

The most natural is a holistic pairwise comparison of some actions
relatively well known to the DM, i.e. reference actions

28



Holistic preference information

m Psychologists confirm that DMs are more confident exercising their
decisions than explaining them

m The most natural is a holistic pairwise comparison of some actions
relatively well known to the DM, i.e. reference actions

holistic
preference information
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Holistic preference information

m Question: what is the consequence of using on the whole set A
this information transformed to a compatible preference model ?

preference information

XYy
Z=W
DM X =W | analyst Preference model
:> y =V :> compatible
Us t with preference
. information
Z>U
usz

What
ranking
will result?

-/
Apply the preference model on A
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Principle of the ordinal regression

m The preference information is given in the form of
partial preorder on a subset of reference actions ARCA

m Additive value (or utility) function on A: for each xecA

()= u[0,(x)

|
where u; are non-decreasing marginal value functions

31



The UTA method

32



The UTA method (Jacquet-Lagreze & Siskos 1982)

m Marginal value of action x,€A is approximated by linear interpolation

u; ?

L{!(Jx?)__.f‘”f;’fr’

R

Figure I: Piecewise linear marginal utility function
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The principle of the ordinal regression — the UTA method
(Jacquet-Lagreze & Siskos 1982)

= The marginal value functions (breakpoint variables) are estimated by
solving the LP problem

Min - E' = Y (o*(a)+0o(a))

acAR

subjectto ™

U@)+o (@)-o(a)>Ub)+s (b)-c(b)+e <= a- b} va,beAR

U@)+o (@)-o(@a)=Ub)+s*(b)-c(b)= a~b

ul(xij+1)_u,(xlf)20 Jj=0,...,y;-1;, Viel >( )
C

> uiB)=1

i=1

Ui(o;)=0 Viel

u,-(x,-j)z 0, 67(@)>0, 6 (a)=0, vae AR, vi and j )

where ¢ is a small positive constant, and st and o~ are auxiliary
variables (errors of approximation)
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“The most representative value function” of UTA: UTAMP1 model
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UTAMP1 model (Siskos & Yannacopolous 1985)

m After verifying that the set of compatible value function is not empty,
the “"most representative” value function is estimated by solving the
following LP problem,

Max ¢
Min SELA Skl
2 ] G\ ))

XkeAR -

subject to
U’(xk)z U'(xk+1)+ g o xK = xKk+l . A
U,(Xk): U,(Xk+1)<:> XK o k1 '

u,-(x,-j”)—u,-(xij)z 0 j=0,...,y;; Viel

Zui(ﬂi)zl
ui(ai):O Viel
Ui(xij)zaﬁﬁk— 1 )=0: vx“ e A%, Vi and j Y,

ct(x¥)=0, o7 (x¥)=0
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Intuition behind the Robust Ordinal Regression
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Basic question

m Remark 1. If there is one value function representing the preferences
of the DM, in general, there are infinitely many others.

m Remark 2. In general, each one of these infinitely many value
functions, gives a different ranking of actions from A.

= Why to consider only one of these infinitely many value
functions?

38



One should use all compatible preference models on set A

m Question: what is the consequence of using all compatible preference
models on set A ?

preference information

analyst

All instances of
preference model
compatible
with preference
information

|/

What

Apply all compatible instances on A

rankings
will result?




Rank related preference information

m Types of indirect preference information in particular nodes of the tree:

> Desired ranks of alternatives, e.qg.,

@ should take place [elgRi{gENTole [[F))]
@ should (not) be ranked among top / bottom 5 alternatives

® should be among ERUGRLINZRC ST FATIE £ GG ELG T

‘/ m is predisposed to secureRUEN o El=-N oI W T ol 1)
g X should be ranked [t CREE T LR CH R =T ETHEUNES

4+ should be ranked BURUGE o IFATEIE IR RGER Tl Uyle]

evaluation profile of @ predisposes it

to have value at least / at most x

M. Kadzinski, S. Greco, R. Stowinski: RUTA: a framework for assessing and

selecting additive value functions on the basis of rank related requirements.

OMEGA, 41 (2013) no.4, 735-751
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The UTAGMS method

41



The UTAGMS method (Greco, Mousseau & Stowifiski 2004, 2008)

= DM is supposed to provide the following preference

information:
m a partial preorder = on AR, such that vx,yeAR

X >y < ,xis at least as good as y”

42



The UTAGMS method (Greco, Mousseau & Stowinski 2004, 2008)

a)
b)
c)
d)

e)
f)

A value function U is called compatible if it satisfes
the constraints corresponding to DM’s preference information:

Ux)>U(y) iff x>y
U(x) > U(y) iff x>y
Ux) = U(y) iff x~y
u(x)>u(y) iff x>y, iel

Moreover, the following normalization constraints should also be taken

into account:
U,-(Ot,-)=0, IEI

> uii)=1

iel
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The UTAGMS method (Greco, Mousseau & Stowinski 2004, 2008)

m If constraints a) — f) are consistent, then we get the two weak
preference relations =" and ~* :

s the necessary weak preference relation: for all x,yeA,
x =Ny < U(x) = U(y) for all compatible value functions
(i.e. for all compatible value functions x is at least as good as y)
s the possible weak preference relation: for all x,y€A,
x =Py < U(x) = U(y) for at least one compatible value function
(i.e. for at least one compatible value function

X is at least as good as y)

44



Is it necessary the possible preference relation?

» |If we do not consider the possible preference relation, we are

not able to distinguish these following two cases.
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The UTAGMS method (Greco, Mousseau & Stowinski 2008)

m Basic properties: for all x,y,z€A

s XNy = x>Py

m >N is a partial preorder (i.e. =N is reflexive and transitive)
s x-Ny andy-Pz= x>Pz

s X"y andy -Nz= x-Pz

m XNy or y>=Px

= P is strongly complete (i.e. for all x,yeA, x-Py or y-Fx) and

negatively transitive (i.e. for all x,y,zeA, not x-°y and not y-z =
not x-Fz ), (in general, =P is not transitive)

m Giarlotta and Greco (2013) proved that the first 5 properties
characterize -\ and ~F .
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The UTAGMS method (Greco, Mousseau & Stowifiski 2004, 2008)

m The marginal value function u,(x;)

A
ui(x;)

o Vi Vi W; Z; B,

y,v,w,zeAR

Characteristic points of marginal value functions are fixed
on actual evaluations of actions from set A

47



GRIP - Generalized Regression with Intensities of Preference

48



GRIP - Generalized Regression with Intensities of Preference
(Figueira, Greco & Stowinski 2005, 2008)

m GRIP extends the UTASMS method by adopting all features of UTAGMS

and by taking into account additional preference information :

m comprehensive comparisons of intensities of preference between
some pairs of reference actions,

e.g. ,x is preferred to y at least as much as w is preferred to z”

= partial comparisons of intensities of preference between some pairs

of reference actions on particular criteria,
e.g. ,x is preferred to y at least as much as w is preferred to z, on

criterion g,eF”

49



GRIP - Generalized Regression with Intensities of Preference
(Figueira, Greco & Stowinski 2005, 2008)

m DM is supposed to provide the following preference information :
m a partial preorder = on AR, such that vx,yeAR

X >y & ,xis at least as good as y”

m a partial preorder =* on ARxAR, such that vx,y,w,zeAR

(x,vy) =* (w,z) < ,x is preferred to y at least as much as w is preferred to z”

= a partial preorder >=* on ARxAR, i=1,...,n, such that vx,y,w,zeAR

(x,y) =™ (w,z) < ,xis preferred to y at least as much as w is preferred to z,

on criterion g;eF”.

50



GRIP - Generalized Regression with Intensities of Preference

a)
b)
c)
d)
e)
f)

g)
h)
i)

J)

(Figueira, Greco & Stowinski 2005, 2008)

A utility function U is called compatible if it satisfes
the constraints corresponding to DM’s preference information:

Ulx) > U(y) iff x>y

U(x) > U(y) iff x>y

Ux) = U(y) iff x~y

U(x) - U(y) = U(w) - U(z) iff (x,y) >=* (w,2)

Ux) - Uly) > Ulw) - U(z) iff (x,y)>* (w,z2)

U(x) - U(y) = U(w) - U(z) iff (x,y)~* (w,2)

u(x) > uly) iff x>y, iel

u(x) - u(y) 2 u(w) - u(z) iff (x,y) => (w,z), iel
u(x) - u(y) > u(w) - u(z) iff (x,y)=* (w,z), iel
ul(x) - u(y) = u(w) - u(z) iff (x,y)~* (w,z), iel
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GRIP - Generalized Regression with Intensities of Preference
(Figueira, Greco & Stowinski 2005, 2008)

m Moreover, the following normalization constraints should also be
taken into account:

k) U,-(Ol,-)=0, ielN

DY uiBi)=1

iel
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GRIP - Generalized Regression with Intensities of Preference
(Figueira, Greco & Stowinski 2005, 2008)

m If constraints a) — /) are consistent, then we get two weak preference
relations =" and ~*

m a necessary weak preference relation: for all x,y<€A,
x =Ny < U(x) = U(y) for all compatible value functions
m a possible weak preference relation: for all x,y<€A,

x =Py < U(x) = U(y) for at least one compatible value function
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GRIP - Generalized Regression with Intensities of Preference
(Figueira, Greco & Stowinski 2005, 2008)

m If constraints a) — /) are consistent, then we get also two overall binary
relations comparing intensity of preference ~*N and ~*” :

m a necessary relation of preference intensity: for all x,y,w,ze A,

(x,y) =*N (w,z) < [U(x) - U(y)] = [U(w) - U(2)] for all compatible
value functions

m a possible relation of preference intensity: for all x,y,w,ze A,
(x,y) =*° (w,z): [U(x) - U(y)] = [Uw) - U(z)] for at least one
compatible value function
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GRIP - Generalized Regression with Intensities of Preference
(Figueira, Greco & Stowinski 2005,2008)

m If constraints a) — /) are consistent, then we get two binary relations

comparing intensity of preference ~*N and ~** for each criterion g;eF:

m a necessary relation of preference intensity: for all x,y,w,ze A,

(x,y) =N (w,z) < [u(g;(x)) — ui(gi(y))] = [ui(g:(w)) - u(gi(2))]
for all compatible value functions

m a possible relation of preference intensity : for all x,y,w,ze A,

(x,y) =*F (w,2): [ui(gi(x)) — ui(g:(¥YN] = [ui(gi(w)) - ui(gi(2))]
for at least one compatible value function
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GRIP - fundamental properties of
ENI tpl E*Nl E*Pl ii*Nl ti*P

m Some properties:
= XNy = x-y,
= (xy)=-*N(w,z) = (x,y) =*"(w,z),

u (X/y)ii*N(WIZ) — (X/y) ii*P (WIZ)I giEF

m =N =*N and =*N jeN, are partial preorders

= >, =*P and ~*P are strongly complete and negatively transitive, (in

general, - -, =*P and ~*P are not transitive)
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GRIP - the linear programming problem:
the result is independent of ¢

m Strict inequalities such as b), e), i) are rewritten as:
b’) U(x) = U(y) + ¢
e’) Ux)-U(y)>Ulw) -U(z) + ¢
i) u(x)-u(y)>u((w)-u(z) +ce¢

m x-"y < the set of constraints is feasible and ¢*>0, where
¢*=Max ¢, subject to constraints a)-/), with b),e),i) written as
b’),e’),i’) and U(x) = U(y)

s x-"y < the set of constraints is infeasible or ¢*<0, where
¢*=Max ¢, subject to constraints a)-/), with b),e),i) written as
b’),e’),i’) and U(y) > U(x) + ¢
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The "most representative” value function
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The need for a representative value function

Recommendations taking into account the whole set of admissible
value functions answer to robustness concerns, since they are in
general "more robust” than a single ranking obtained by an arbitrarily
chosen compatible value function.

However, in practice, for some decision-making situations, a score is
needed to assign to the different actions and despite the interest of
the two rankings provided, some users would like to see the “"most
representative” value function among all the compatible ones.

This value function should allow assigning a score to each action.

We propose a way to identify the "most representative” value function
in GRIP, without loosing the advantage of taking into account all
compatible value functions.
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The idea of the ,,most representative” value function (Figueira, Greco,
Slowinski 2008; see also Kadzinski, Greco, Slowinski 2010, 2011)

m The idea is to select among compatible value functions that value
function which better highlights the necessary ranking, maximizing
the difference of evaluations between actions for which there is a
preference in the necessary ranking.

m As secondary objective, one can consider minimizing the difference of
evaluations between actions for which there is not a preference in
the necessary ranking.
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Procedure to determine the "most
representative” value function

1) Determine the necessary and the possible preferences in the
considered set of actions.

2) For all pairs of actions (a,b), such that a is necessarily preferred to
b (a =" b but not b ~" a), add the following constraints to the linear
programming constraints of GRIP: U(a)=U(b)+e.

3) Maximize ¢

4) Add the constraint ¢=¢ *, with ¢¥=Max ¢ of point 3), to the linear
programming constraints of point 2)

5) For all pairs of actions (a,b), such that neither a is necessarily
preferred to b nor b is necessarily preferred to a (not a =" b and
not b -V a), add the following constraints to the linear programming
constraints of GRIP: U(a)-U(b)<s and U(b)-U(a)<é.

6) Minimize 6
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Alternative procedure to determine the "most
representative” value function

1) Determine the necessary and the possible preferences in the
considered set of actions.

2) For all pairs of actions (a,b), such that a is necessarily preferred to
b (a =" b but not b ~" a), add the following constraints to the linear
programming constraints of GRIP: U(a)=U(b)+e.

3) For all pairs of actions (a,b), such that neither a is necessarily
preferred to b nor b is necessarily preferred to a (not a =" b and
not b " a), add the following constraints to the linear programming
constraints of GRIP: U(a)-U(b)<s and U(b)-U(a)<é.

4"y Maximize the following objective function: Me¢ -5, where M is a
“big value”.
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First illustrative example:
ROR is easy!

63



Illustrative example

Students Mathematics Physics Literature
S1 Medium Medium Good

S2 Good Good Medium
S3 Medium Good Medium
S4 Medium Medium Medium
S5 Good Good Bad

S6 Medium Bad Good

64



Information on preferences given by the DM

= Preferences between students

m S2>-8S1

m 54> 55

m S5>5S6

= Overall intensity of preferences

m (S5,56) ~* (S2,51)

= Intensity of preference relative to single criteria

= (Good,Medium) S rahematics (Medium, Bad)

65



Necessary weak preference -*" from GRIP
(Hasse Diagram)

S2

N\

S1 S3

N/

S4

S5

S6
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“"The most representative value function”

m ¢=0.1, 8=0
Mathematics | Physics Literature
Bad 0 0 0
Medium |0 0.4 0.3
Good 0.1 0.5 0.4
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Evaluation of students by means of
“the most representative value function”

Students | Mathematics Physics Literature Value
S1 Medium (0) Medium (0.4) Good (0.4) | 0.8
S2 Good (0.1) | Good (0.5) Medium (0.3) | 0.9
S3 Medium (0) Good (0.5) Medium (0.3) | 0.8
S4 Medium (0) Medium (0.4) Medium (0.3) | 0.7
S5 Good (0.1) | Good (0.5) Bad (0) 0.6
S6 Medium (0) Bad (0) Good (0.4) 0.4
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Value function given by UTAMP1

m £=0.167
Mathematics | Physics Literature
Bad 0 0 0
Medium |0 0.5 0.33
Good 0.17 0.5 0.33
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Evaluation of students by means of UTAMP1

Students | Mathematics Physics Literature Value
S1 Medium (0) Medium (0.5) | Good (0.33) [ 0.83
S2 Good (0.17) | Good (0.5) | Medium (0.33) |1

S3 Medium (0) Good (0.5) | Medium (0.33) [0.83
S4 Medium (0) Medium (0.5) | Medium (0.33) | 0.83
S5 Good (0.17) | Good (0.5) | Bad (0) 0.67
S6 Medium (0) Bad (0) Good (0.33) [ 0.33
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Comparison of GRIP, “the most
representative value function” and UTAMP1

GRIP
S22 Students |“The most UTAMP1

/\ representative
value function”

51\‘ F S1 0.8 0.83

52 0.9 1
e

S5 54

l S5 0.6 0.67
S6 S6 0.4 0.33

UTAMP1 does not represent the necessary weak preference of
S3 over 54



A didactic example:
ROR is interactive!
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UTAGMS : an illustrative example

Ranking problem: 20 actions evaluated on 5 criteria

S; |S2 |53 |S4 [S5 |Se |S7 |Ss |So |Sio|Si1|S12|S13|S14 |Si5|S16 |S17 | S18 | S19 | S20
g, |2 1 3 0 1 3 0 4 3 3 3 3 3 1 1 4 1 3 3 3
g, |0 |3 1 2 1 3 0 4 0 4 1 2 3 0 3 1 2 1 2 2
g; [0 |O 1 1 4 2 3 1 3 3 3 3 3 1 1 4 1 3 3 3
gs |5 5 4 4 4 3 3 2 2 3 1 1 1 3 1 1 2 4 0 1
gs |3 2 3 2 2 3 3 0 3 0 4 2 1 3 4 2 3 2 3 1

Empty dominance relation !

Evaluation matrix
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UTAGMS : an illustrative example

First iteration

&)

C

@

Q<

IO E OO

X oooe
D OO
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UTAGMS : an illustrative example

Second iteration @ @

75



UTAGMS : an illustrative example

Third iteration
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GRIP : an illustrative example

Fourth iteration, after addition of intensity condition: (sg,510)~(51,5>)

/
/

\
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UTA-DISGMS for multicriteria sorting problems

= Actions from set A are to be assigned to pre-defined and
preference-ordered classes

m Classes have a semantic definition

m Assignment to classes is grounded on absolute evaluation
of actions on multiple criteria

= No relative comparison is required because sorting is
,context-free”, which is not the case of choice and ranking
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UTA-DISGMS — given data

H:{lj...,p},

o Xj=1{x; € R:gj(aj) =xj,a; € A} - the set of all different
evaluations on gj, j € G,

.
o xY.x}. ....x:7 - the ordered values of X;, (X < ?{,kﬂ)
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UTA-DISGMS — preference information

@ A* C A - a set of reference actions,

@ An assignment example is an action a* € A* for which the
DM defined a desired assignment a* — [Com( -y, Crom (o],
where [C;pm(,+), Crom ()] is an interval of contiguous classes

CLDM(EJ-::}, CLDM(3$)+1, ey CRDM{Q*)'

@ An assignment example is said to be precise if
[PM(a*) = RPM(a*), and imprecise otherwise.

@ A set of assignment examples is consistent with U iff

va', b e A", U(a") = U(b*) = RPM(a%) = LPM(b*) (1)
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UTA-DISGMS — preference model

To represent DM's preferences, we use a value function U:

n

U(a) =) ui(gi(a))

Jj=1

where the marginal value functions u; are such that:

ui(xf) < Uj(xfﬂ), k=01....m—-1j,€G

To normalize U so that U(a) € [0,1],7a € A, we set:

uj(xf) = 0.V, G

> i1 uj(xjmj) =1
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UTA-DISGMS

Consider the threshold-based sorting procedure
@ a € Ais assigned to class C, (a — Cp) iff U(a) € [by_1, bp)

@ bp_1 corresponds to the minimum value for an action a to be
assigned to class Cy,

@ by is the supremum value for any action a to be assigned to
class Cp, i.e. if ais assigned to class Cp, then U(a) < by

@ we impose by < by, Vh € H and we set bg = 0 and b, > 1
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UTA-DISGMS

Threshold-based sorting

-

A Un(gn) e

v

.._,-'-""




UTA-DISGMS

We consider the example-based sorting procedure

@ [he example-based sorting procedure is driven by a value
function U and its associated assignment examples A* C A.
It assigns an action a to an interval of classes [Cu (), Cru(,)]:

LY(a) = Max{LDM(a*):U(a*)

|/
=
L
—
L
¥
M
N
*
— —
®

RY(a) = Ms’n{E’DM(a*): U(a®) .

1/
=
L
o ——
Al

e

0

>

¥
‘-._v_.f

w

@ Procedure considered in [Koksalan, Ulu 2003] with linear
value functions.
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UTA-DISGMS

@ Consider the case where [PM(a*) < RPM(a%), Va* € A%,

@ Assuming the use of a|single value function U|in the
example-based sorting procedure,

@ if we choose the b;'f, h=1,...,p — 1 in the interval

]Maxa*:RDM(a*)iih { U(a*)} ? Mf.”a*:LDM(a*)}h {U(aﬂ{)} [r
with by < b/, ,,

@ we obtain a threshold-based sorting procedure that restores
the assighment examples and assigns each non-reference
action a € A\ A" to a single class in the interval
[CLu(ay, Cru(2)] stemming from the example-based sorting
procedure.
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UTA-DISGMS

[C1, G [C1. 2] [C2, C4] [C3, C4] [Ca. C4] [Cs. Cs]

Assignment{ | [{:ll_,cg] | [(:21(:3] | [Cz,lca] | [C?,CE] | [Cy, Cg] |

examples L 4 a ia ia a: 3{6 alq a elg aig alg

Assignment of [C1. C] tcl C3:] [, G5 ['Cz C-ﬂ-] [C3, G4 [C3 C5] [Ca. Cs]

non—reference{ I/"\Jf—"‘_\f-’\]/—’—],—-"—-\ ,——-’*-—

action
by : i by :
Ranges of{' 1 3 ; }
thresholds L . } }
U U
bs b,

U(a')
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UTA-DISGMS

[Ci, o] [C1, G [C2, C4] [C3, Cy] [C3, C4] [Ca, Cs]

Assignment{ | [cll,ca] | [Cz~|fal | [C2,|C3]| | [C?,CE] | [C4~|C5] | U(a)

examples >
5}1 52 ia éa 5’5 éﬁ i} élg? 3!3 519 aim 5"11

*
*

[C1, Gl Ecl.cgj (G Gs] [2.Ca] [Ca.Ca] 1[Gs. Gl [Ga. ]

Assignment of _ N N U(a;)
non—reference{ N 17 ‘W Y’ ' .
action - | I i I I :
U LU
bl . : . bS . :
Ranges of{ 1 3 ; : }
thresholds L . t 1
U U
b} b}

Consider b € A, with U(b) €]U(ag), U a7)|
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UTA-DISGMS

_ _ [C1, G [C1, & [C2TCs [C3, G4 [C3, G4 [Ca, Cs]
Asmgnment{ | [r_“ll_, G | [Cs hl C3] | [CSNC3] | [C?_. Cs] | [C4 ~| Cs] | U( 3)

A
examples ‘41 52 i} i‘l ‘;!5 %5 ;

Assignment of (GGl [G.GI [G.G] [G.Gl (GGl [G. Gl [G. G

/
non-reference{ Y b é ‘ﬁ é ‘1/""’ "“\1#—" "'—'h U(a )

action | 1 ' I I
U Sy ;
bl : . bS .
Ranges of{' 1 3 ; : }
thresholds L 1 ¥
U U
b2 b4

Consider b € A, with U(b) €]U(ag), U a7)]
LY(b) = G
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UTA-DISGMS

_ [C1, G2 [C1, G [C2, C4] [C3, C [C3, C4] 4, Cs]
ASSIgnment{ | [C1, G5 | [C2, G5 | (G2, G5 [C?.- Cs] | [Ca, Ce] U( a)
examples | | | - | >

RN

Assignment of (GG (GGl [G.G] [G.G [G,G] (G, GG, G

'
non-reference { ‘i’—/\]’ A ‘{J\]’ ™ ‘1’_/\-“1"_'&__ U(a )

action | ! ' ! 1 {
U : L LU : :
bl . . bS :
Ranges of{ 1 3 : 1
thresholds L . } 1
U U

Consider b € A, with U(b) €]U(ag),u(a7)|
LY(b) = G, RY(b) = G
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UTA-DISGMS

[C1, G [C1, G (Ca, G4 [Cs. Cal [C3, G [Ca G5

Assignment{ | [cll_,(:a] | [CE]Cg] | [Cg,l'l':a] | [C?_.CE] | [Cq]CE] | U(c’:‘)

R N I
S S D
[C1. &) [G.G] [G, G [ﬂg.'C.qE] [C3. G4 [C3 C5] [Ca, Cs]

Assignment of
non-reference {

|
action - | ! ! : I i
: R : .
U . A RN
b]. : o b3
Ranges of{ 1 —t— : i
thresholds L * l
U U

Consider b € A, with U(b) €]U(ag). A a7)]
LY(b) = G, RY(b) = G
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UTA-DISCMS — posible and necessary assignments

Application of a set of compatible value functions %
Definition

Considering a set A" of assignment examples, the set {4+ of
compatible value functions is defined by:

;{A* ={U clU: RPM(b*) < LPM(a*) = U(a*) > U(b*))

Definition
Given a set A* of assignment examples and a corresponding set
U 4~ of compatible value functions, Va € A, we define:

Cp(a) = {he H: JU e U~ for which h [Lu(a),_ Ru(a)]}
UUEMA*{[LU(E).*RU(Q)]}

Cn(a) = {heH: YU €Uy it holds he[LY(a), RY(a)]}

= Nuel 4» {[L(a), RY(a)]}
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UTA-DISGMS — posible and necessary assignments

@ Consider all increasing value functions (not piece-wise only),
o Consider a* — [Cjom (), Crom( ],

a*" — [Cpom(aery, Crom(,=ny], such that the two intervals of
classes have an empty intersection. It holds:

U(a*) < U(a") iff RPM(a*) < LPM(a*) (4)

Assignment of a*,a* € A*, to intervals of classes having an
non-empty intersection, does not induce constraints,

if |A*| > 2, one should consider constraints (4) for all pairs
assigned to series of classes with an empty intersection,

these constraints (with monotonicity and normality) define (if
consistent) a non-empty set of value functions {4~ compatible
with the preference information,
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UTA-DISGMS — posible assignments

m Computing possible assignments

Begin
h —p
While U~ NUfy—c,) =0 do
h — h-1
N — 1
While U« MUz .c;p =0 do
h — h +1

CP(EI) N [C,{r Cﬁ]
End
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UTA-DISGMS — posible assignments

ui(xf) < ui(,x}-wrl)j k=0,1,....m—-1j €G (5)
UJ(X}O) =0,V € G (6)
S ui(x”) =1 (7)
> joq ui(a) = be,, ()1, Fa €AY (8)
Z_,?:l uj(a) < bep(a) — 5 Va €A (9)
> i1 ui(a') = byoy (10)
>y ui(a) < by —e (11)

@ The set of constraints (5)-(11) is feasible iff the following
linear program has an optimal value £* > O:

Max — ¢

s.t. constraints (5) — (11)



UTA-DISGMS — necessary assignments

Computing necessary assignments

Let us define:
@ ST(a) =1{a € A* : U € Uy~ such that U(d') > U(a)},
@ S (a)={a € A*: JU € Uy~ such that U(a") < U(a)}

[N(a) and RN(a) can be computed as:
o 1N(a) = Maxycs- (o {LV(2)}
o R"(a) = Minycs-(2{RY(d)}

@ Computing S7(a) (and S7(a)) can be done via the resolution
of m x myer linear programs:

Max/Min — U(a') — U(a)
s.t. U Ez/{.«—l"‘
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UTA-DISCMS — incremental definition of set A* with decrasing confidence

Confidence levels and embedded assignment examples

@ Consider an ordinal confidence scale 11 = p = ... = 1,
(e.g., sure = possible > maybe),

@ Each assignment example is assigned by the DM to a
confidence level

— embedded sets of assignment examples,

@ Embedded sets of assignment examples induce embedded
ranges of assignment for non-reference alternatives,
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Group multicriteria ranking problem statement

m Several DMs cooperate in a decision problem to construct a
collective ranking

m DMs share the same ,description” of the decision problem
(set of actions, evaluation criteria, evaluation matrix)

m Each DM provides his/her own preference information

m The collective ranking should account for the preference
expressed by each DM
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Ordinal regression for group ranking: UTA-GROUPGMS

= Set of DMs: D={d,,...,d,}

m Preference information provided by DM d,, h=1,...,p:
BR(d,) a partial preorder on a set of reference actions
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Ordinal regression for group ranking: UTA-GROUPGMS

= We consider the set of value functions for each d,eD*=D stemming
from UTAGMS

m For each D*c D, 4 situations are interresting for (x,y)<A:
m x =NN(D*™) y: x =Ny for all d,eD*,
s x =NP(D*) y: x Ny for at least one d,eD*,
s x =PN(D*) y: x -Py for all d,eD¥*,

s x =PP(D*) y: x Py for at least one d, eD*
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Ordinal regression for group ranking: UTA-GROUPGMS

m Properties
s -NN(D*) is a partial preorder
= -NP(D") is not necessarily transitive
= -PP(D") is strongly complete
s x -NN(D*) y = x =NP(D*) y
s x-NP(D*) y = x =PP(D*) y
When D* < D**, it holds
s X =NN(D*™) y = x=NND*) y
s X -NP(D*™)y = x=NP(D") y
s X -PN(D")y = x=PN(D") y
s X-PP(D™)y = x=PP(D")y
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Ordinal regression for group ranking: UTA-GROUPGMS

m Given a set of DMs D*c D, a value function U is compatible if it
satisfies the following set of constraints:

}v”‘ b e Af(dy),d, € D*

wi(gi(@r (i—: >0 1=1,....1n, 7=2,....M - "
wi(gi(a i (J 1))) = U, ’.‘ 3 7_? J yeeey T \ (EAR(D ))

/

where 7; 1s the permutation on the set of indices of alternatives that reorders them accord-
ing to the increasing evaluation on criterion g;, 1.€.

gz’(afﬂ-(l)) < gi(“ﬂ(‘Z)) T s v g-z’(a'ﬂ_(m—l)) T gi(a‘ri(m))

m Suppose that set U,« of compatible value functions is not empty
(DMs statements are not contradictory)...
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Ordinal regression for group ranking: UTA-GROUPGMS

m One obtains two rankings such that for any pair of actions (x,y)<A:

= x -N(D*) y: x is ranked at least as good as y iff UP*(x)>UP*(y)
for all value functions compatible with the preference information
(necessary weak preference relation =N being a partial preorder)

= x -P(D*) y: x is ranked at least as good as y iff UP*(x)>UP*(y)
for at least one value function compatible with the preference
information (possible weak preference relation =" being a strongly
complete and negatively transitive binary relation)

= However, the set U,« of compatible value function can be empty...
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Ordinal regression for group ranking: UTA-GROUPGMS

Suppose %=

m %,« corresponds to the intersection of sets of compatible value
functions for all d,eD™ (each one being non-empty)

m  This means that pairwise comparisons of two (or more) DMs are
contradictory

m Identifying which are these contradictory comparisons amounts
at solving inconsistency

m This leads to know which comparisons to remove in order to obtain
a consistent collective model

m Performing these computations vD*cD allows to indentify coalitions
of convergent DMs, for which a necessary and possible consensus
rankings exist
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Ordinal regression for group ranking: UTA-GROUPGMS

m Reasoning in terms of pairwise comparisons decomposes elicitation

of preference information into small natural pieces

= UTA-GROUPEMS gvoids discussions of DMs on technical parameters

(tradeoffs, weights, ...)

m Taking into account all compatible value functions permits to reason

in terms of necessary and possible rankings and coalitions
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UTA-GROUPEMS ; an illustrative example

Ranking problem: 3 DMs (d1, d2 and d3), 20 actions evaluated on 5 criteria

g, |2 1 3 0 1 3 0 4 3 3 3 3 3 1 1 4 1 3 3 3

g, |0 3 1 2 1 3 0 4 0 4 1 2 3 0 3 1 2 1 2 2

gs |0 0 1 1 4 2 3 1 3 3 3 3 3 1 1 4 1 3 3 3

gs | 5 5 4 4 4 3 3 2 2 3 1 1 1 3 1 1 2 4 0 1

gs |3 2 3 2 2 3 3 0 3 0 4 2 1 3 4 2 3 2 3 1

Evaluation matrix

Empty dominance relation !
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UTA-GROUPEMS ; an illustrative example

m Statements of DMs:
m di: S{>S5, Sg>S;, S17>Sog
[ | dz: 59>‘Sl3, S4>‘55, 514>‘S7

[ | d3: S4>‘S3, 515>‘511, 58>‘510

B Uy 033= a1 a2 03=9, i.€., statements of d; and d; are contradictory:
| dl: 51 >'52 — 53 >‘S4

[ | d3: 54 >‘S3 — 52 >'51

= If (d; removes s, ~s,) or (d; removes s, >~S3), then % 41 45 533# &

107



UTA-GROUPEMS ; an illustrative example

= Although % 4 433= 9, the following relations are not empty:
m -NN({d,,d,,d5}) = {(SsS7)}, i.e., sg-Ns, for all d,
n -NN({dy,d5}) = {(SeS7)s (S9,S13) )
n -NN({dy,d5}) = {(S6:S7)s (S17/520)}
s -NN({d,,ds5}) = {(SeS7)s (S15S511)}

s x-VP({d,,d, ds}) y: x-Ny for at least one d,

= x-"N({d,,d,,ds}) y: x-Py forall d,

= x-"P({d,,d,,d;}) y: x-Py for at least one d,
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UTA-GROUPEMS ; an illustrative example

m Suppose d; removes s, >S5 then the collective model leads to the
following collective necessary ranking:
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Multicriteria group sorting with a set of additive value functions:
UTA-DIS-GROUPSMS

= Set of DMs: D={d,,...,d,}

m Preference information provided by DM d,, h=1,...,p:

a*—>h[ c. .,C . ]
minp(a )’ maxp(a )

for all reference actions a*e AR

m Given a set of DMs D’c D,
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Multicriteria group sorting with a set of additive value functions:
UTA-DIS-GROUPSMS (necessary and possible assignment)

4= |:Cming.(a) ’ Cmaxg.(a)}
means that all DMs in D’ agree that action a can be assigned to

one class from the interval [C N, C }
minp. () max . (a)

d— [Cming.(a) ’ Cmaxg.(a):|
means that that there is at least one DM in D’ who believes that

action a can be assigned to one class in the interval [C » ,C o, }
minpr(a@) =  maxp(a)

|:Cming.(a) ’ Cmaxg.(a):| s |:CminB-(a) ’ CmaxB-(a):|
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Robust Ordinal Regression approach for outranking methods

m Preference information provided by DM:

asSb or asc<b, for a,beAR
m Concordance function, for a,beA:
C(a,b)=[w;c'(a,b)+...4+w, ' (a,b)]/(Wi+..+W,)

= since (w;+...+w,)=1, we can consider C(a,b)=c,(a,b)+...+c,(a,b),
where c/(a,b)=w,'(a,b), i=1,...,n

= c/(a,b) is a monotone, non-decreasing function w.r.t. g,(a)-g.(b),
such that c,(a,b)>0 for all a,beA (alt. for g(a)-g,(b)>g=>0), i=1,...,n,
and
c,(a,b)+...+c,(a,b)=1 in case g(a)-g;(b)=p—«a; for all i=1,...,n
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Robust Ordinal Regression approach for outranking methods

E(AR)

= Ordinal regression constraints, for a,beAR :

[ ci(a,b)+..+c,(a,b) >\ and gy(b)-g(a) <v, i=1,..,n, if aSb

c,(a,b)+...+c,(a,b) < A+e+My(a,b) and gib)-g.(a) > vi+e-dM,a,b),
M(a,b)e{0,1}, i=1,...,,n, My(a,b)+M,(a,b) ...+M_(a,b) <n, if aScb

A >0.5 v,>0 (alt. v>p>g>0), i=1,...,n,

c(a,b)>0 forall a,be AR and i=1,...,n,
c,(a,b)+...+c,(a,b)=1 for gia)- g,(b) B—o;, i=1,...,n

c(a,b) > c(c,d) if g(a)-g(b) > g(c)-g(d), for all a,b,c,deAR, i=1,...

where ¢ is a small positive value and 6 is a big positive value

\ (if specified, preference and indifference thresholds p;,q; are given)

/N
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Robust Ordinal Regression approach for outranking methods

m  Given a pair of actions x,ycA, x necessarily outranks y:
xSVy < d(x,y) >0
d(x,y) = Min{c,(x,y)+...+c,(x,y) — .}, s.t. E(AR), where

c(a,b) = c(c,d) if g(a)-g(b) = gi(c)-g(d), forall a,b,c,deAR{x,y},
i=1,...,n, and

g(y)-g{x) <v, i=1,..,n

m d(x,y) >0 means that for all compatible outranking models
Xx outranks y

m For x,yeAR:

xSy = xSy

114



Robust Ordinal Regression approach for outranking methods

m  Given a pair of actions x,ycA, x possibly outranks y:
xSPy < D(x,y) >0
D(x,y) = Max{c,(x,y)+...+c,(x,y) - L}, s.t. E(AR), where

c(a,b) = c(c,d) if g(a)-g(b) = gi(c)-g(d), forall a,b,c,deAR{x,y},
i=1,...,n, and

g(y)-g{x) <v, i=1,..,n

= D(x,y) >0 means that for at least one compatible outranking model
Xx outranks y

m For x,yeAR:

xSy = not ySFx
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Robust Ordinal Regression approach for outranking methods

m For any pair of actions x,yeA :
xSVy < not xS¢Py
xSPy < not xSVy

so, only xS"y and xS”y are to be checked

116



Robust Ordinal Regression approach for outranking methods:
the case of group decision

m Generalization for group decision
is analogical to UTA-GROUP®MS and UTA-DIS-GROUPSMS

m For each DM d,eD’cD we consider all compatible outranking

models
m Four situations are interesting for x,ycA :
s x SNN(D") y: x SN y for all d,,eD’
m x SNP(D") y: x SN y for at least one d,eD’
m x SPN(D") y: x SP y for all d,,eD’
m x SPP(D’) y: x SP y for at least one d,,eD’
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ROR and Interaction among criteria
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Basic concepts
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Setting

m N={1,2,...,n} set of criteria
m X, : set of possible values of the i-th criterion

m X=11Xi = Xy % X5 s xXq={(Xq,e0s Xp) X1 €Xey Xq€X b1 sEL Of
all conceivable alternatives

= X include the alternatives under study. . . and many others!
m In this case we suppose that X; = X, =... =X, =XcR, such that
X=Xn
m >: weak preference realtion on X such that for all x,yeX
X >y
means

«X is at least as good as y»
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Marginal preferences

= > weak marginal preference relation on X;, ieN, such that for
all x;,y,eX

X; = Y; means «x; is at least as good as y;»
= We suppose also that
Xi 2 Y < X =Y,

= >": weak marginal preference relation on LnJXi, such that for
all x;eX,,y;eX;, i,jeN -
X; =" y; means «x; is at least as good as y»
= We suppose also that
X 2 Yy & X =Y

]
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Weighted sum model

m For all all x,yeX

)(23/C>2:VVX-—§:VVy|

with w; non negative for all i € N.

= In this case w; can be interpreted as the importance of criterion ieN.
= The importance of couple of criteria {i,j}cN is given by w; + w;.
m The importance of set of criteria AcN, denoted by u(A), is given by
A)=>.w,
IcA

m Observe that for A,BcN such that AnB=Y

wAUB)=> W+ > w = > w = u(A)+ u(B)

icA ieB ieAUB
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Introductory example

123



Illustrative example (Grabisch 1996)

Students Mathematics Physics Literature
S1 18 16 10
S2 10 12 18
S3 14 15 15
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Illustrative example (Grabisch 1996)

Students | Mathematics Physics Literature Global
evaluation
(weighted sum)
S1 18 16 10 15.25
S2 10 12 18 17.25
S3 14 15 15 14.62
Suppose that the school is more scientifically than literary

oriented, so that weights could be for example 3, 3 and 2
respectively.
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Illustrative example (Grabisch 1996)

“If the school wants to favor well equilibrated students without
weak points, the above ranking is not fully satisfactory,
since student S1 has a severe weakness in literature, but has
been considered better than student S3, who has no weak point.
The reason is that too much importance is given to
mathematics and physics, which are in a sense redundant
since, usually, students good at mathematics are also good at
physics (and vice versa), so that the evaluation is
overestimated (resp. underestimated) for students good (resp.
bad) at mathematics and/or physics.”

How to solve the problem?
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Representing importance of criteria by means of a fuzzy
measure (or capacity)

® -2V —0.1] is a fuzzy measure satisfying the
following axioms:

s (D) =0, u(N) =1 (boundary conditions);
» AC B C N implies (A) < u(B) (monotonicity
conditions);

For any AcN, u(A) represent the importance of the set of
criteria A.

It is no more true that for any A,BcN such that AB=g we
have

n(AUB)=n(A)+u(B)
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Representing importance of criteria by means of a fuzzy
measure in the illustrative example (Grabisch 1996)

Set of subjects A u(A)
%) 0
{Mathematics} 0.45
{Physics} 0.45
{Literature} 0.3
{Mathematics, Physics} 0.5
{Mathematics, Literature} 0.9
{Physics, Literature} 0.9
{Mathematics, Physics,Literature} 1

u({Mathematics,Physics})< u({Mathematics})+ u({ Physics})
(redundancy between Mathematics and Physics)

u({Mathematics,Literature} )< u({Mathematics})+ u({ Literature})
(synergy between Mathematics and Literature)
u({Physics,Literature})< u({Physics})+ u({ Literature})
(synergy between Physiccs and Literature)
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The Choquet integral (1952): computing a “weighted sum”

using the non additive weights given by the fuzzy measure

The Choquet integral of x € X C R"} is defined as follows:

Cp{x) = Z;l [I{i} - -T{i—l]l] j(Ai)

with ) stands for a permutation of the indices evaluations of
criteria such that:

(1) ST(2) ST3) S - S I(p)
with A; = {(i),....,(n)} where A,;; = {0} (i = 1,..,n) and
'l-'{l'” — n

Observe that the Choquet integral can be written also as follows:
max x;

C,(x)= Njy({] e N :x, > x, [Hit
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Illustrative example (Grabisch 1996): computing the Choquet
integral for students S1

Students | Mathematics Physics Literature

S1 18 16 10

XLit = Xphys <XMath

A;={Mathematics,Physics,Literature}

A,={Mathematics,Physics}

A;={Mathematics}
C,(18,16,10)=(10-0)xu(A;)+(16-10)xu(A,)+(18-16)xp(A,)=
(10-0)x14+(16-10)x0.5+(18-16)x0.45=13.9
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Illustrative example (Grabisch 1996): computing the Choquet

integral for students S2

Students

Mathematics

Physics

Literature

S2

10

12

18

A;={Mathematics,Physics,Literature}

XMath = Xphys SX[jt

A,={Physics,Literature}

As={Literature}

C,(10,12,18)=(10-0)xu(A;)+(12-10)xu(A,)+(18-12)xp(A,)=

(10-0)x1+(12-10)x0.9+(18-12)x0.3=13.6
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Illustrative example (Grabisch 1996): computing the Choquet

integral for students S3

Students

Mathematics

Physics

Literature

S3

14

15

15

A;={Mathematics,Physics,Literature}

XMath = Xphys SX[jt

A,={Physics,Literature}

A;={Physics}

C,(18,16,10)=(14-0)xp(A;)+(15-14)xp(A;)+(15-15)xu(A,)=

(14-0)x14(15-14)x0.9+(15-15)x0.45=14.9
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Illustrative example (Grabisch 1996)

Students | Mathematics Physics Literature Global
evaluation
(Choquet
integral)
S1 18 16 10 13.9
S2 10 12 18 13.6
S3 14 15 15 14.9

Choquet integral ranks student S1, that has a severe weakness in
literature, worse than student S3, that has no weak point.




Specific cases of Choquet integral

m C (XyesXp)= Max(Xxy,...,X,) if u(A)=1 for all GcAcN (and, of
course, u()=0)

m C (Xy..sXy)= mMin(Xy,...,X,) if u(A)=0 for all cAcN (and, of
course, u(N)=1)

m C (XyesXy)= OWA(Wy,...,Wp; Xy,...,Xp) if u(A)=p(B) when [A[=]B],
for all A,B = N with

OWA(W{, ..., Wi X g, Xy ) =W X1y +... +W Xy (Yager 1988)
and w,= u(A)-u(B) with A,B < N such that |A|=i and |B|=i-1;

. C (Xy,..0Xn)= W (K-th order statistic, 0<k<n) if u(A)=0 for [A|<k
and u(A)=1 for |A|=k for all AcN.
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The Mobius transformation of a fuzzy measure (or capacity)

a(R) =Y (-1)F=Tly(T), foreach R C G
TCR

is a Mébius transformation with « : 2¢ — R such that:

® a() =0, Z a(T) = 1 (boundary);
TCG

® > a(T)>0Vg € Rand VR C G (monotonicity).

TCR

Cla) = Z a(T") min g; (a)

€T
TCG 9i€

is the Choquet integral in terms of the Mébius
representation.
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The Shapley value

m The global importance of a criterion ieN is not solely

determined by the value u({i}), but also by all u(A)
with AcN such that icA.

m But how to extract from these values the contribution of
i alone?

= By the Shapley value

olli)= Y 2D

AcN:ieA ‘A‘

)3 QA‘_l)!(,n _‘A‘)!(ﬂ(A)—ﬂ(A—{i}))

AcNieA n!
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The interaction index

= The interaction between iand j is not only determined

by the difference u({i, j}) - n({i}) - u({j}) but also by
all the coefficients n(A) such that {i, j} < A. Then,

how to compute a degree of interaction which is

meaningful?

m By the interaction index (Murofushi 1993)

ol i)= 3 AN

AQNI{LJ’}QA‘A‘_]'
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2-additive fuzzy measures

a()=0, > a({g})+ > a({gg;}) =1 (boundary);

g €G {9i.9;}CG

a({gi}) 20, Ygi € G, a({g:}) + Y a({gi-g;}) >0,

ngT

Vgi e Gand VT C G\ {g:} (monotonicity.)
In this case, the Choquet integral is given by:

Cula) = Y al{gi}) gi(a)+ Y a({gi9;}) min{gi(a),g;(a)}.

g e gi.9; G
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Shapley value and interaction indices in case of
2-additive fuzzy measures

The importance index (Shapley index) of i € G is:

o =a(iin+ Y U

J€G\{i}

The interaction index for a couple of criteria i. j € G is:

o ({i.3}) = a({i.3}).
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Non Additive Robust Ordinal Regression
(Angilella, Greco, Matarazzo 2010)

e Non Additive Robust Ordinal Regression (NAROR)
multicriteria aggregation-disaggregation method for ranking
alternatives including preference information on interaction
and importance of criteria

e A fuzzy measure p is called compatible if it restores the

DM'’s preference information on A’ C A
e Two preference relations: the necessary weak preference

relation
T }'_'N Yy < C,u (1-') = Cp('ﬂ)

for all fuzzy measures pand =,y € A

e and the possible weak preference relation
T }_"F Yy = G,u (I) = Gp(y)

for at least one fuzzy measure ;. with .y € A.
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The Decision Maker’s preference information

e Partial preorder = on A’ fora,b e A”:
a~b < aisatleastas goodas b
e Partial preorder =* on A’ x A" fora.b,c.d € A"

(a,b) =" (c,d) <

a is preferred to b at least as much as ¢ is preferred to d
e Partial preorder > on G for i, j € G-

i>7 < 1is atleast as important as criterion ;
e Partial preorder >*on G x G for i, 4.1, k € G :

(i,5) >* (1K) ©

Difference of importance of criteria i and j is at least as
much as difference of importance of criteria / and
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The Decision Maker’s preference information

¢ Positive or negative interaction of pairs of criteria
e Partial preorder >,yon G x GG for i, j, 1.k € G-

(7, 7) Bint (1, k)

e Partial preorder > . on G x G x G x G for

i, 1, L k. r.s.t,w € G-

[(TI'.' J) ('E k]] I:—}zltr‘lt [(Tf "’] (f'.' f“*")]

Difference of interaction between criteria : and 7 and
interaction between criteria [ and £ is at least as much as
difference of interaction between criteria » and s and
interaction between criteria t and w.
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The Decision Maker’s preference information

e Setof DMs: D ={DM;,: h=1,--- ,p}
From a mathematical point of view, we have the following
system of linear constraints:
(C(a) > Cu(b) ifa=b witha,be A,
Cula) = Cu(b) if a~ bwith a,be A’
Cyula) — Cu(b) > Cule) — Culd) if (a,b) =* (c.d) with a,b,c,d e A’,
w({t}) = ({7} fix7 withi,5 € G,
e({i}) —e({i}) > o({l}) — w({k}) if (i,7) &~ (1, k),
w({i.7}) < 0 (redundancy) or ({i.7}) = 0 (sinergy), with i,j € G,
le({i. 31 = |e({L k]| 0 (i, 7) B (1, K)with @51,k € G,
le({i. 31| = le({L kDI > le({r, sH| = le({t. wh I [(Z.5), (. K)] oy [(r 5), (£, w)]
with i, 4.1, k,r, s, t,w € G,
a®=0, Ta({ip+ X a({iih=1,

T

icls {i.i}CG
a({i})) z0,Vie Gia({it})+ > a({i,.7}) > 0Vie GandV T C G\ {i}
L JET
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The Decision Maker’s preference information

Since linear programming is not able to handle strict
inequalities in Zp,,, , we put the constraints in the form of
weak inequalities, by adding £ > 0
(Cu(a) > Cu(b) +2ifa>b witha,be A,
Cula) =Cu(b)+=if a~bwitha,be A,
Cula) — Cu(b) > Culc) — Culd) + £ if (a.b) =* (c.d) with a,b,c,d € A’
w({i}) > e({j}) +=ifirj withi je G,
e({i}) — ({7} > e({1}) — w({k}) + € If (i,5) >* (L, k),
w({i,7}) < 0 (redundancy) or ({1, 7}) > 0 (sinergy), with i, 7 € G,
le({i, 3D = le({l, k)| + & if (i, 7) i (I, k)with i, 5, Lk € G,
je({i. i })] — le({L kD) = [e({r. s} — le({t. w})| + = if [(@. 7). (L k)] e, [(r s). (£ w)]
with i, 4, Lk, 7, s, t,w € G,

a@®=0, a({ih+ ¥ a({ijh=1,

DM,

=Te {i.j}ca
a({ih>0,VieGa({i+ ¥ a({i.j}) > 0,¥ie Gand¥T C G\ {i}
JET
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The Decision Maker’s preference information

# The polyhedron defined by the linear constraints can be

empty due to some inconsistencies in the DM’s
preference information:

# Decision Analyst’s interactive arrangements can help
the DM to solve such inconsistencies
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NAROR methodology

IE
maxe S.L DM
Culy) 2 Culz) +¢.

If ¢ <0, then C,(x) > C,(y) for all compatible ;. that implies
r =N ywith z,y € A.

max e S.t. o,
Culz) = Culy)-
If = > 0, then there exists at least one compatible fuzzy
measures ;. such that C,(z) > C,(y), that implies z = y
with =,y € A.
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A recruitement problem

Education | Experience | Age | Interview

Odile 8 6 7 5
Slobodan 3 1 10 10
Charles 10 9 0 5
Irene 5 9 2 9
Katherin 8 0 8 6
Felix 5 9 4 7
Germaine 8 10 5 7
Benedicte 5 7 9 4
Arthur 0 10 2 8

Example inspired from Pomerol and Barbera-Romero,1993; criteria on a [0, 10] scale.
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The Decision Maker’s preference information

A’ = {Qdile, Slobodan, Benedicte, Charles, Katherine}
#® Charles = Slobodan

# Germaine > Slobodan

# (Odile, Charles) -* (Benedicte, Slobodan)

# (Benedicte, Katherine) =* (Charles, Slobodan)

® EdrEx, ExrAgand Agr In

# (Ed,Ex)v* (Ag,In)

# o(Ed,Ex) >0, o(Ex,Ag) > 0 and ¢(Ex,In) <0

® (Ed,EX) it (EX,AQ)

148



Necessary and possible preference relations

[
"
s
-
'

- _‘."' e U —
faesap Mooy relsiess
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ROR and the enriched additive value functions:
the UTAGMS-INT method
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Plan

m Interaction among criteria explained on an example
m Incapacity of additive value function and Choquet integral
m Robust Ordinal Regression dealing with interactions — UTACMS-INT
= Input preference information
m Discovering the need of handling interactions
= Identifying the pairs of interacting criteria
m Calculating the necessary and possible preference relations
= Didactic example
m Interaction on bipolar scales - UTAGSS

m Conclusions
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Interaction among criteria explained on an example
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Interactions between two criteria

m Positive interactions (e.g., maximum speed & price of a car):

u, (x,,x )>u,.1(x )+u (x,z)

Il/’2
m Negative interactions (e.g., maximum speed & acceleration of a car):
u,ll,z(x X; )< u,.l(x )+ u (xz)

ih7
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Illustrative example

Students Mathematics Physics Literature
S1 Good Medium Bad
S2 Good Bad Medium
S3 Medium Medium Bad
S4 Medium Bad Medium

What preference model would be able to represent the preference:

S2>~S1 and S3 > 5S4

?
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Additive value function

m Consider an additive value function

U(x) = Y ufg;(x)]

m Does there exist an additive value function representing
the preferences S2 - S1 and S3 > S47?
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Additive value function

S2 > 5S1
U(S2)=Upain(GOOD)+ Up,ys(BAD)+U, ((MEDIUM)
>
Unatn(GOOD)+Up, s (MEDIUM) +U,;,(BAD)=U(S1)

S3>54
U(S3)=Upath(MEDIUM)+ Uy, s(MEDIUM) +U| (BAD)
>
Umath (MEDIUM) + Uy, o(BAD) +U (MEDIUM)=U(S4)
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Additive value function

S2 > 5S1
U(S2)=Uynu£GO0D)+ Up,s(BAD)+U ((MEDIUM)
>
Unapp{GOOD)+Up;,«(MEDIUM) +U,;,(BAD)=U(S1)

S3>54

U(S3)=Upaty}MEDIUM) + Uy, s (MEDIUM) + U, (BAD)
>

Unath (MEDIUM) + Uy, (BAD) +U (MEDIUM)=U(S4)

contradiction !
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Additive value function: violation of preferential independence

Students Mathematics Physics Literature
S1 Good Medium Bad
S2 Goo Bad Medium
S3 Medium Medium Bad
S4 ediu Bad Medium

S2>-S5S1 and S3 > 54

>
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Choquet integral

Numerical encoding on a unique scale of the evaluations on each

criterion:

Students | Mathematics | Physics Literature
S1 Good Medium Bad
S2 Good Bad Medium
S3 Medium Medium Bad
S4 Medium Bad Medium
Students | Mathematics | Physics Literature
S1 1 0.5 0
S2 1 0 0.5
S3 0.5 0.5 0
S4 0.5 0 0.5
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Choquet integral

m Definition

O
—~
Q
S
Il

NE
=)

Q
—
Q
=
I
=
Q
IX
™
=
X
-
—
X
p

i=1

where u(g,) is encoding g, on a common numerical scale,
(y Stands for the permutation of the indices of criteria:

dm(@) = gp-pp(@) =1 ... =1 gyy(a)

w(R;) is called capacity of R;, i.e. weight for subset of criteria R;

Ri = {(I)Il(n)}l i=1l"'lnl u(g(O)) =0
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Choquet integral

m The Choquet integral is not able to represent the dean’s preferences
S2 - S3 and S3 > S4 for any order-preserving numerical encoding

u of the evaluations and for any values of capacity d

m S2>S1 means C,(S2) > C,(S1), which implies

[u(Good)—u(MeditrdT<I({Math}) + [u(Medium)—u(Bad)]xu({Math,Lit})

>
[U(Good) —u(MedrmmT-({Math}) + [u(Medium)—u(Bad)]xu({Math,Phys})

m 53 >S54 means C,(S3) > C,(S4), which implies

[u(Medium)—u(Bad)]xu({Math,Phys}) > [u(Medium)—u(Bad)]xu({Math,Lit})

contradiction !
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Choquet integral

m Bipolar Choquet integral could handle this interaction but it is yet less
intuitive

m Problems with respect to numerical encoding. How to transform
performances on criteria into numerical values of a common scale?

Questions, like: ,is maximum speed of 180km/h worth a fuel
consumption of 12 I/100km™?

m Problems with respect to non-additive weights (capacity). How to
translate the possible interaction among criteria into the capacities?
Is there an intelligible relation between the preference information
provided by the DM and the obtained value of the capacity?
(see Mayag, Grabisch, Labreuche, 2008; Gonzales, Perny, 2005)

m Problems with respect to interpretation of the Choquet integral. Is it
possible to clearly justify preference of alternative a over alternative b
in terms of values of the integral’s components?

(see Roy, 2009) s



We propose to enrich the additive value function...

= We consider a value function of the type

U™(a) =2 u,(g;(a))+

n
i=1

+ D Syn/?;,iz (gi1 (a)/ g (a)) - 2 syn, . (gi1 (a)/ g, (a))
(i1\,i2 )eSyn”* } E/i,fz )eSyn™ }
| |

,bonus” ,malus”

Syn* is the set of pairs of criteria in a positive interaction
Syn- is the set of pairs of criteria in a negative interaction
Synt N Syn- =

syn; . (), syn, . (-,-) are non-decreasing functions
in the two arguments
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Illustrative example: value function Unt

Students Mathematics Physics Literature
S1 Good Medium Bad
S2 Good Bad Medium
S3 Medium Medium Bad
S4 Medium Bad Medium

Preferences of the dean:

S2>S1 and S3 >S4

violate the principle of preferential independence
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Illustrative

example: value function Unt

Mathematics | Physics | Literature

Good 0.03 0.62 0.32
Medium 0.02 0.28 0.26
Bad 0 0.01 0

Non-interacting part of Ut
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Assuming Mathematics & Literature in positive interaction

Good,Good ,Bonus” component of Uint

0 lOB Sy n;vath,/it (/)
Good,Medium
0.03
Medium,Medium Good,Bad
0 0
Medium,Bad

0
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Illustrative example

_ Total

Students | math phys lit syn,;ath,,,-t(-,-) SaniE

s1 Good | Medium Bad Good,Bad 0.31
0.03 0.28 0 0

S Good Bad Medium Good,Medium 0.32

0.03 0 0.26 0.03

3 Medium | Medium Bad Medium,Bad 0.30
0.02 0.28 0 0

S4 Medium Bad Medium | Medium,Medium 0.28
0.02 0 0.26 0

S2>~S1 and S3 >~ S4

(0.32 > 0.31 and 0.30 > 0.28)
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Advantages of the new value function when used within ROR

m  With respect to numerical encoding: we do not need an a priori
expression of all the evaluations on a common numerical scale;

i.e. the marginal value functions are not supposed to be known

m Problems with respect to non-addtive weights (capacity): we do not
need non-additive weights; the value function is computed using ROR

and even does not need to be shown to the Decision Maker

m Problems with interpretation of the interaction components:
interpretation of ,bonus” and ,,malus” with respect to the sum

of marginal values is cognitively simple
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Interactions between two criteria

Positive interactions (e.g., maximum speed & price of a car):

Uy i (X5, X3, ) > 1, (6 )+ 0, ()

Negative interactions (e.g., maximum speed & acceleration of a car):

u,ll,z(x X, )<u,.1(x )+u (xz)

ih7

IR ={{i1,i2}:i1,i2el}, x1eXiy, XpeXp
Syn+tcI(?) , set of pairs of criteria for which there is a positive synergy
Syn—cI(?), set of pairs of criteria for which there is a negative synergy

Synergy strength is measured by
functions syn; . : X, x X, —[0,1], syn;

ih,ip *

: X, x X, —>[0,1]
not decreasing in both arguments, called ,,bonus” and ,,malus”

1,12
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Interactions between two criteria

Positive interactions (e.g., maximum speed & price of a car):

u, . (x . x)=u, (x, )+ u, (x, )+syn; . (x,, x,)
Negative interactions (e.g., maximum speed & acceleration of a car):

u,ll,z(x,l,x ) = u,.l(x,.l)+ u,.z(x B syn,ll,z(x,l,x )

IR ={{i1,i2}:i1,i2el}, x1eXiy, XpeXp
Syn*tclI?, set of pairs of criteria for which there is a positive synergy
Syn-cI?, set of pairs of criteria for which there is a negative synergy

Synergy strength is measured by
functions syn; ,: X, x X, - 0,1], syn, , = X, x X, > 0,1]
not decreasing in both arguments, called ,,bonus” and ,,malus”
syn; ,z(x,l,x ) x Syn. ,2( ,l,x,.z): 0, v(i,i,)elI?, v(x,.l,x,z)e X, x X,
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UTACMS-INT

= We consider a value function of the type

U (@)= 2 ui(g,(a)+

+ 2. syn, (gi1 (@), gi, (a)) - ) syn. , (gi1 (@), gi, (a))
({1,1'2 JeSyn* } \(il,iz )eSyn™ }

', GMS I,
,bonus ,malus

m Preference information elicited by the DM is the same as
in the GRIP method:

m pairwise comparisons of some reference alternatives
a’',b’eA’" (partial preorder - on A’ — set of reference alternatives)

= ordinal intensity of preference for quadruples of reference
alternatives a’,b’,c’,d’ €A’, comprehensively or on specific criteria
(partial preorder >=* or >=* on A'xA")
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Three options to consider interaction

m Considering a value function of the type

U (@)= 2 ui(g,(a)+

+ 2. syn, (gi1 (@), gi, (a)) - ) syn. , (gil (@), gi, (a))
({1//'2 JeSyn* } \(il,iz )eSyn™ }

! GMS |
,bonus” ,malus”

m d) bonus and malus are not mutually exclusive, so that positive
and negative synergies interplay,

m [3) bonus and malus are mutually exclusive,

m Y ) only one of the two synergies is considered, either the
positive, or the negative
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Compatible value functions

: T Tint I

L U a) 2 UTNY) + 2 il = Y preference stat]aments of the DM !

L Ut (a!) = UMY i o ~ b

|

: (_’/,.T-z'.n.t(a!) . U.mt (bf) 2 U?'..n.t (Cf) Umt(d!) if (a.", b") i::k (C", d") \ (1’, b’, Ca'? dr e A" 5(28)

L wilgi(a’)) —ui(gi(0') = wi(gi(c’)) — wilgi(d')), E

|

! if (o' 0) s (. d). iel :

E(f'f"*”(a.’) > UMY if gila') > g;(b') fori=1,...,n, and for all «’. b’ € A’ o 1(29)

| monotonicity of Unt i

:'Itf(gf(fi;i.(j-))) - u"i(g’i(“fri(j_1))) >0,i=1,...,n, j=2....m :(30)
|

iu‘i(g‘i(afri-(j))) - '“'-i(ﬂi(“'fri(j—1})) =0, if g'i(a:”i-(j})) = Q'i(a'fr,é(j—lj).- t=1,..,n, j=2,.. '”?-:,(31)

| |

\ui(gi(al,q))) 20, i =1,...,n monotonicity of the non-interacting part of Unt (32)

1 1

i) =0,i=1,....n (33)

I |

U ) =1 1(34)

|

I |

U (a') 2 0, foralla’ € A’ normalization and non-negativity of Unt 5(35)

|
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Compatible value functions (cont.)

synt (90 (@), gis(a')) > synd (g5, (V) 9ia (V).
monoton|C|ty of the bonus and malus functlons
(i1,i2) € I?, iy > iy, if giy(a") = gi, (b)) and g4, (a’) = gi, (b'), for all a’,b" € A’

syngy iy (902 (@), 93 (@) = synid 4, (g6, (V) 9ia (V')
(i1,i9) € I?, iy > io, it gi,(a") = g;; (V') and gi,(a") = gi, (V). for all a’, 0/ € A’

(36)

syng, i, (gi(a"), giy (")) = syng ;. (g1, (V). 91y (V).

('il,'ig) = I , 11 > 19, If Jiy (a.") > 9iy (b’) and [ (a") > [ (b’), for all a.",b" = A’

qyn’?ﬁ:,ig(g‘il (a',)*-gig (a’)) = Syn‘;._ig (9?51 (b{)?g‘ig (b’)),
('E,"l._'l"g) - IQ._ 31 = 'L;Q._ if Giq (a.") = Uiy (b’) and Gio (a’) = Yis (b!), for all a.",b" < fll

qyn,: «m(ih* Ligx) = 0, SYn,, ,m({:@l*_,;,tfig*) =0, (i1,i2) €1 x 1, iy > iy

______..________________-____________
(]
o0
~—
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Eliciting a minimal set of pairs of interacting criteria

m Let us introduce two binary variables:

4 )
< 6: . = 1iff (i.,79) are positively interacting,
6. =0 otherwise,
122 . >
< 07,4, = L1Iff (i1,42) are negatively interacting,
9, .. = 0 otherwise.
\ 12 /

= Any pair of criteria can be either in positive or in negative interaction:

0., + 0, <1, forall (iy,i2) € I x I, iy > is

177



Eliciting a minimal set of pairs of interacting criteria

m In order to find a minimal set of pairs of criteria with either positive
or negative interactions, one has to solve the following program (P)

T T L S el o
Minimize z = E (()_I.‘”.Q + (),l.lz.g)
11 <i9.i1.10€1
subject to

constraints (28) — (41)

Ogiy + 0535, <1, forall (i1,42) € I x I, i1 > iz

ZZ)

syn . (zF ,zF) < §F. , for all (i1,22) € I X I, 11 > i2

11.19 21? %719 1122

syn, . (aF a7 ) <4, ., forall (i1,i9) € I x I, i1 > s
21 Z) l‘>

i1’ 1119

o 6 {O 1} for all (1112) el x1I, 11 > 19,

212

m (P) yields a value function U™ involving a minimal set of pairs

of interacting criteria
Syn.+ = {('il,'i;g) elxlI, ii1>14:0

1112

=1} and Syn™ = {(i1,i2) € I X I, i1 > g : ¢

P N N P Ny PN
b = W —
(@) (g |

S— S S— N’

:1}
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Eliciting a minimal set of pairs of interacting criteria

These two sets are then presented to the DM for validation. The DM can react in one of the

following ways:
a) accept Syn™ and Syn~ as relevant sets of interacting pairs of criteria,
3) refuse a pair (i1,i2) in Syn™ and Syn~, i.e. deny the interaction between criteria iy and i,,
v) add a pair (i1,i2) to Syn™ and Syn~, i.e. impose interaction between criteria iy and .

In case 3) or v), one has to solve again program (P) with the following additional constraints:

e in case of 3): &, =07, =0,
e in case of ~): (): i, = 1, in case of positive interaction, and 9, ;,, = 1, in case of negative

interaction.
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Computing necessary and possible preference relations

m To confirm relation a =" b it is enough to check if ¢¥<0 or the set of

constraints is infeasible, where ¢*:
Maximize: ¢

subject to

—————————————————————————————————————————————————————————————————

| UM (p) > U™t (g) + ¢, can b be preferred to a for some compatible Unt? 5(48)

monotonicity of of UM, of the non-interacting part of U"”fi
and non-negativity of Unt for A" augmented by {a,b} !

I . .

LU () > UTN) i gi(ad)) > gi(), fori=1,.. ., n, and for all ', b’ € A’ U {a,b} (49)
I I

E -u..i(gi(a.;,i(j))) - u.z-(gz-,(a;ri(j_l))) 0, 4= 1, cugtly § =20y ml'F w 5(50)
I o= : . ; !

i wi(gi(az,y) — wilgi(ay,;—1))) = 0, if gi(ay, ;) = gi(ar,j—1)), 1 €1, j=2,...,m +«|(51)
| |

! -11.2-,(911((1..;‘,“1))) 2 0 1 =1L syt (52)
I , :

' UM(d’) >0, foralld’ € A" U {a,b} 5(53)
:

|

|

|

|



Computing necessary and possible preference relations (cont.)

—————————————————————————————————————————————————————————————————

E.Syn*; gi (@), gis(a") = syn . (gi, (b)), giy (V') for all (iq,iz) € Syn 5(5—1)
i if g;, (a') > g;, (V') and g;,(a") > g4, (b), forall ', € A" U {a,b} i
E-S;!/"’"-;Z.vig(gil(a')-gig(fl')) = syng i, (9 (V'), gin (V)), for all (i, i2) € Syn™, 2(55)
i if gi,(a') = gi, (V') and g, (a") = gi, (b'), for all a’,b" € A" U {a,b} i
G}, G B]) 2 50 6w 0, B (), Tor 8l i) & ST, (56)
i if g, (a’) > gi, (V') and g, (a’) > g4, (b'), for all ’,b" € A" U {a, b} i
sy i (902 (0), gia (@) = syni; 1, (g6, (V). 1o (V)), for all (i, iz) € Syn™, | (57)
E if g;,(a’) = gi, (V') and g;,(a’) = g4, (b'), for all ’,b" € A" U {a, b} E
.sy'rz,_z_,l-g(.ill*.J:.Z-Q*) =0, syn; ;. (Tix Lip) = 0, for all (iy,ip) € Synt U Syn~ 5(58)
; monoton|C|t of the interacting part of Ut |
iy (i (@) + wiy (935 (@) = syng, 4, (961 (@), 935 (@) = for A” augmented by {a,b} |(59)
| e / / - A :
i wiy (giy (b)) 4 iy (9i, (b)) — syng ;. (gi, (b), g, (b)), i\?(g{(’az’));;f?b’)73,;?5;;52?5%}’ |

G o e e e e e e e M M e M Mmm M e M Mmm M e M Mmm mmm e M Mmm Mmm e M Mmm Mmm e Mmm Mmm M M Mmm Mmm M e Mmm Mmm M e Mmm Mmm M e Mmm Mmm M e Mmm Mmm M e M mmm e e e

Unta) = wla)+ S synd o (gn(@)gn(@) = S sy, (9 (a), gia(a))

=1 (i1.,i2)ESyn+ (i1.i2)ESYN—



Computing necessary and possible preference relations

m To confirm relation a =~ b one has to check if the set of constraints is
feasible and ¢*>0 in the previous problem, where constraint (48) is

replaced by U"n(a)>U"(b)+ ¢
= Using ~"and ~” one can compute:
m necessary ranking (partial preorder in A)

m possible ranking (strongly complete and negatively transitive

relation in A)

m If a score is needed to assign to the different alternatives, one can
calculate a ,representative” value function among all the compatible

ones. 182



Example of application of UTACMS-INT
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Illustrative example

m Performance matrix

Students | Mathematics | Physics Literature
(math) (phys) (/it)
S1 Good Medium Bad
S2 Good Bad Medium
S3 Medium Medium Bad
S4 Medium Bad Medium
S5 Medium Medium Medium
S6 Medium Good Medium
S7 Good Good Bad
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Preference information elicited by the DM

m Pairwise comarisons of (reference) students
m S2>S1
m S3>54
= S5 S1
m Overall intensity of preferences
= (S3,54) -* (S2,51)
m Intensity of preference relative to single criteria
s (Medium, Bad) >—>; (Good, Medium), i=math, lit
s (Good, Medium) >-’; (Medium, Bad), i=phys

m A’ ={S1,S2, S3, 5S4, S5}

186



Preference information given by the DM

m Dominance relation and pairwise comparisons of reference students

Preference
— -
O- O statement

O _~Dominance
O relation
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Decision aiding procedure

m First, we solve program (P), and obtain at the optimum
6 i1 12 6_11 2= O fOI’ a” (Il IZ)EIXI except B_math lit— 1

m This means there exists U"t compatible with the dean’s preferences,
involving a negative interaction between Mathematics and Literature

m Suppose that the dean is not willing to consider a negative interaction
between these two criteria — 67, =0 enters (P) - (P')

m Solving (P'), we get
0% p= 071 ,=0, forall (i1,i2)elxI, except & . phys=1

m Suppose that the dean is not willing to consider a negative interaction
between these two criteria — & . pnys=0 enters (P’) - (P”)

m Solving (P"), we get
0%i1 p= 071 =0, forall (i1,i2)elxI, except &%, =1

m Suppose the dean accepts to consider this pos. interaction (math, lit)
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Necessary preference relation >N

- z 2
e A A2
& A2
L0 _Vﬂ ”...ﬂ. ”...ﬂ
e A AL A
U AL AL A A A AL R
YO AL AL AL A A A2
e Al A AL
YA AL YN NN
_— o™ g _ =t 7 o i
nh W n w N

Students (.55, 5;)
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Necessary preference relation =N — graphical representation

m Using this information,
the dean is able to
identify the best student,
even if the value function
Unt is not unique
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Representative value function Unt

m In order to give a score to each student, we compute a representative
value function

= Non-interacting part of the representative Ut

Umath | Uphys Wit

Good 0.14 0.52 | 0.14

Medium 0.10 0.24 | 0.10
Bad 0 0 0
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Representative value function Unt

= ,Bonus” component syn*, .., oOf the representative UM

Mathematics / Literature || Good | Medium | Bad
Good 0.19 0.19 0
Medium 0.05 0
Bad 0
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Representative value function Ut — scores and ranking

= ,Bonus” component syn*, .., oOf the representative UM
and scores of students

Students Umath Uphys Uit synt o | UM(S)
Sy 0.14 (Good) | 0.24 (Medium,) 0 (Bad) 0 0.38
s, 0.14 ( Good) 0 (Bad) | 0.10 (Medium) | 0.19 0.43
S, 0.10 (Medium) | 0.24 (Medium) | 0 (Bad) 0 0.34
Sy 0.10 (Medium.) 0 (Bad) 0.10 (Medium) 0.05 0.25
St 0.10 (Medium) | 0.24 (Medium) | 0.10 (Medium) 0.05 0.49
Se 0.10 (Medium) | 0.52 (Good) | 0.10 (Medium,) 0.05 0.77
S, 0.14 (Good) | 0.52 (Good) 0 (Bad) 0 0.67

m S56>S57>S55>52>S51>S53>54
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SMAA and Robust Ordinal Regression
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SMAA methods (Lahdelma et al. 1998)

Basic assumptions:

@ Imprecision or lack of data (weights of criteria and evaluations of alternatives

over criteria)

@ density function fiy(w) over the weight space W,

=

@ density function f,(£) over evaluation space Y C R,
Computations for each alternative of:

@ Rank acceptability index

b= [ KO [ wlw) dw o
gex weWw; (€)

@ Pairwise winning index:

plana) = [ fwlw) | £(€) ddw
Swe W fexu(fn,w) > u(&i,,w)

where W/(§) = {w € W : rank(j, &, w) =r}.
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ROR and SMAA under a unified framework

@ Very often a =F b and b =F a. Therefore it is interesting to know which is
the frequency of the preference of a over b and viceversa the frequency of the

preference of b over a or the frequency with which an alternative fills the k-th
position in a ranking and so on.

@ The link between ROR and SMAA has been already investigated in M.
Kadzinski, and T. Tervonen (2013a,2013b).
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Indirect preference information

2 indirect elicitation based on Ordinal Regression,

(E. Jacquet-Lagreze and Y. Siskos 1982, 2001; Y. Siskos and E. Grigoroudis
2010);

@ robust indirect elicitation based on Robust Ordinal Regression (ROR)

(S. Corrente, S. Greco, M. Kadziniski, R. Stowiriski 2013,2014; S. Greco, V.
Mousseau and R. Stowinski 2008);

@ stochastic indirect elicitation based on Stochastic Ordinal Regression (SOR)
(M. Kadziriski and T. Tervonen 2013a, 2013b).
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SOR: ROR and SMAA under a unified framework

@ Very often a = b and b =F a. Therefore it is interesting to know which is
the frequency of the preference of a over b and viceversa the frequency of the

preference of b over a or the frequency with which an alternative fills the k-th
position in a ranking and so on.

@ The link between ROR and SMAA has been already investigated in
M. Kadzinski and T. Tervonen 2013a,2013b.
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SMAA-Choquet
(Angilella, Corrente, Greco 2012, 2014)
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SMAA Choquet

On the DM’s preference constraints, a sampling of compatible
preference parameters (Mobius measures) is obtained by a

Hit-and-Run algoritm (Smith, 1984) that is outperformed for
a maximum number of iterations.

The algorithm

At each iteration generates a candidate point (the preference
parameters) that is uniformly distributed along a randomly
chosen direction within the feasible region defined by the DM's
preference information.
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Indices of SMAA-Choquet

Computation of:

@ the rank acceptability index of every alternative by
considering the different compatible preference parameters
(the Mobius measures obtained after each iteration)
giving to alternative a; € A the rank r on the basis of a
utility function expressed in terms of a Choquet integral.

@ the Mobius measures corresponding to the capacities for
which the Choquet integral ranks every alternative a; as
the best.
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Evaluation matrix

Alternatives
Criteria ||| @y | @y | a3 | a4 | a5 | a5 | a7 | ag | ag
81 83 /10, 5|8 5|85 |0
g 619909 10| 7|10
84 5110 5|9 |6 |7 |7 4,8
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DM'’s preference constraints

[ o({g1}) > ¢({g2})
o({g2}) > ¢({g3})
p({g3}) > w({ga})
p({g1.82}) >0
o({g2.83}) >0

{ o({g.&}) <0

20 =0, Ta(feh+ X a({g.g)=1

gicG {gi.g}CG
3({51'}) E D-. ‘?fgf G

a({&i}) + ZTE({EJ-E&'}) >0,Vg € GandV T C G\ {g}
g€

.

The Hit and Run Sampling has been outperformed with
Maxlter = 100, 000
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Rank acceptabilities (b;) in percentages

1 £ ) 5 [ [ B ]
At Bf b b b b B b b b

i

a,; | 003 5132 4364 435 066 000 000 0.00 0.00
a | 0,00 029 060 137 500 578 3451 50.04 241
az; | 13.28 34.08 2051 1225 962 549 394 083 0.01
as | 000 000 016 258 19.16 56.33 1992 185 0.00
as | 000 000 048 460 529 7904 3655 4450 0.65
ag | 0.00 000 510 2090 4851 2110 437 003 0.00
ay | 86.70 1315 015 000 000 0.00 000 0.00 0.00
ag | 0.00 1.15 29.37 5396 11.7v6 337 039 001 0.00
ag | 000 000 000 000 000 000 032 275 9694
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First rank acceptability (b1) and central weights

Alt ai as a7
by 0.03 13.28 86.70
a({1}) 0.32799 0.4833 0.23032
a({2}) 0.1308 0.12818 0.15372
a({3}) 0.055755 | 0.19372 0.14022
a({4}) 0.1808 0.16042 0.1788
a({1,2}) | 0.045792 | 0.21504 0.2164
a({1,3}) 0.1751 -0.12405 0.053909
a({1,4}) | -0.10253 | -0.044048 | 0.0067834
a({2,3}) | 0.25613 | 0.053126 0.092624
a({2,4}) | -0.040672 | -0.049708 | -0.063965
a({3,4}) | -0.029203 | -0.015979 | -0.0088056
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Subjective Stochastic Ordinal Regression
(Corrente, Greco, Kadzinski and Slowinski 2015)
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Subjective Stochastic Ordinal Regression (SSOR)

'}Ht-

@ Which probability to use in the space of compatible value functions?

@ We induce a probability distribution that permits to represent uncertain DM’s
preferences.

@ Differently from SOR, the probability distribution is not given in a
EX0geneous way.
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Uncertain preference

In addition to the certain preference information, the DM could also give some
uncertain preference information as the following:

"The preference of a over b" is at least as credible as "the preference of b over a".

All value functions have to be compatible with the certain preference information
provided by the DM. At the same time, we propose to induce a probability

distribution on the set of compatible value functions reflecting the uncertain
preference information.
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The procedure

@ Sampling a number sy of value functions satisfying monotonicity and
normalization constraints and being compatible with the certain preference
information provided by the DM,

@ Induce a probability distribution {w:(U;) € [0,1] : D°;¥, we(U;) = 1} on the
set composed by these value functions on the base of the uncertain

preference relation.

Denoting by a 7—; b and (a,b) 7, . (¢, d) the uncertain preference relations
between pairs and quadruples of alternatives, respectively, we shall translate these
preferences as follow:

ar bs Z w(U:) = Z w(Ut)

t:U(a)> U b) t:Us(b)= U, a)
(a.b) Zes ()& Y wl)> > w(lUy)
t:Ue(a) = U, (b) t:U(c)=Ue(d)
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Inducing a probability distribution

Solving the following LP problem ...

£, = maxe, subject to

Z w(U;) = Z w(U;) +¢=, ifa=, b, ﬁ
t:U(a) = U (b) t: U (b)=>Us(2)

> w(U) = ) w(U)+e, if(a,b) =L (c,d),
t:Us(a)= U (b) t:Us(c)=U(d) , E,
sV
Y w(lU) =1
t=1
w(Us) >0,t=1,....sy

4

if E; is feasible and =, > 0, then there exist at least one probability distribution on

the set of value functions compatible with the uncertain preference provided by
the DM.
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Three possibilities

@ Considering the most discriminant probability distribution obtained by solving
the previous LP problem:;

Q@ Sampling a certain number of probability distributions compatible with the
uncertain preference information provided by the DM by using the
Hit-And-Run (HAR) method (R.L. Smith 1984) and computing their
barycenter w* called representative probability distribution;

& Applying ROR on the space of probability distributions compatible with the
uncertain preference information provided by the DM.
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In the first two cases . ..

We can define the indices typical of SMAA:
" | b; = Z W( Ut).

t:rank(k, U )=r

2 p(an, ax) = Z w(Uy).

t:Us(agp) = Us(ag)
Based on the parwise winning index, the following preference relation can be
defined:

an ¢ ak < p(an, ak) = p(ax, an).
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In the third case ...

Since more than one probability distribution can be induced on the space of
compatible value functions, the probabilistic necessary and probabilistic possible
preference relations could be defined:

@ ay i‘;f ay Iff the preference of a, over a, is more credible than the preference
of ax over ay for all induced probability distributions,

@ ap i‘;f ay Iff the preference of ap over a; is more credible than the preference
of a; over a; for at least one induced probability distribution.
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Proposition
a =7 is strongly complete, that is for all a,b € A, a=F b or b =F 3,
o ZNCZV Ccmfczicz?,
@ Foralla.be A az) borb 7] a
o Foralla,b,cc A, ifa="bandb =V c, thena=] c,
@ Foralla.b,ce A, ifaz) bandb =N c, then azZ) c,
@ Foralla,b,cc A, ifaz=" band b=} c, then a =] c,
@ Foralla.b,ce A, ifaz] band b= c, then a ] c.

Here by =% we denoted the preference relation obtained by considering whichever

probability distribution compatible with the uncertain preferences provided by the
DM.

—



Illustrative example
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Problem definition

Let us suppose that the owner of a firm has to employ one among six sales

manager evaluated on the following criteria: sales management experience (g1),
international experience (g») and human qualities (g3).

Table : Evaluations of the sales managers

g1 82 g3
Bassama | 28 18 28
Calvet 26 40 44
Ferret 35 62 25
Frechet 9 62 88
Petron 6 15 100
Varlot 62 43 0
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Certain preference information

The owner of the firm provided the following certain preference information:
@ Varlot is preferred to Petron (Varlot = Petron),

@ Varlot is preferred to Petron more than Ferret is preferred to Calvet
((Varlot,Petron) =* (Ferret,Calvet)).

We sampled sy, = 10,000 value functions satisfying the monotonicity and
normalization constraints as well as the constraints translating the certain
preference information provided by the DM.
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Likely preference information

Besides, the owner of the firm wishes to provide also this further uncertain
preference information:

@ The preference of Calvet over Frechet is more credible than the viceversa
(Calvet =" Frechet),

@ The preference of Varlot over Frechet is more credible than the preference of
Calvet over Frechet ((Varlot,Frechet) =, . (Calvet,Frechet)).
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Rank acceptability indices

Table : Rank acceptability indices in percentage by using the representative probability
distribution. Among brackets the rank acceptability indices got by applying the classical

SMAA methodology.

by by by by by by
Bassama | 102 (0.73) | 1.89 (197) | 18.62 (10.79) | 21.37 (19.15) | 47.5 (54.03) | 96 (13.33)
Calvet 0 (0) 152 (2.5) | 37.75 (19.54) | 47.17 (55.8) | 12.89 (21.09) | 0.66 (1.07)
Ferret | 26.95 (45.13) | 64.36 (42.77) | 820 (11.39) | 038 (066) | 0.02 (0.05) 0 (0)
Frechet | 15.87 (26.75) | 1155 (19.07) | 19.74 (33.22) | 23.06 (11.74) | 2827 (8.94) | 1.50 (0.28)
Petron 0 (0) 0.27 (0.09) | 078 (0.41) | 156 (1.89) | 9.15 (12.29) | 88.23 (85.32)
Varlot | 56.16 (27.30) | 2041 (33.6) | 14.82 (24.65) | 6.45 (10.76) | 2.15 (3.6) 0 (0)
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Pairwise winning indices

Table : Pairwise winning indices in percentage by using the representative probability
distribution. Among brackets the pairwise winning indices got by applying the classical

SMAA methodology.

pla, b) Bassama Calvet Ferret Frechet Petron Varlot
Bassama o (0) 20,49 (2659) | 2.17 (1.48) 33 (15.58) 8074 (86.3) 4.34 (6.28)
Calvet T0.51 (73.41) o (0) o (0) 50.02 (16.29) | 97.25 (96.94) | 879 (14.67)
Ferret 07.83 (98.52) 100 (100) o (0) B0.85 (67.89) | 9057 (99.6) | 39.58 (66.26)
Frechet 67 (B4.42) | 49.98 (83.71) | 10.15 (32.11) o (0) 97.73 (99.5) | 253 (4237)
Petron 10.26 (13.7) 2.75 (3.06) 0.43 (0.4) 227 (0.5) o (0) 0 (0)
Varlot 95.66 (93.72) | 91.21 (85.33) | 60.42 (33.74) | 74.7 (57.63) 100 (100) o (o)
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Probabilistic Necessary and Possible preference relations

(a) Probabilistic necessary preference rela-

tion

Calwet

Frechet

Warlot

Baszama
Calwet
Ferret
Frechet
Petron
Varlot

= = R = = I =]

= O 0O =

I—'==l—'¢=§

= I = =]

I—'l—'ﬁﬁﬁﬁg

LI — I — I — I — |

(b) Probabilistic possible preference relation

Bassama | Calwet | Ferret | Frechet | Petron | Warlot
Baszzama 1 1 1 1 1 1
Calwet 1 1 o 1 1 o
Ferret 1 1 1 1 1 o
Frechet 1 a o 1 1 1
Petron 1 1 1 1 1 o
Varlot 1 1 1 1 1 1
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Multiple Criteria Hierarchy Process
(Corrente, Greco, Slowinski 2012, 2013)
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Hierarchical decomposition of complex decision problems

= ,Almost everyone who has seriously thought about the objectives in
a complex problem has come up with some sort of hierarchy of
objectives.”
(R.L. Keeney & H. Raiffa, 1976, p. 41)

m LA hierarchy is an abstraction of the structure of a system to study
the functional interactions of its components and their impacts on the
entire system.”

(T.L. Saaty, 1980, p.5)

m ,In the process of structuring the problem, it is possible (even likely)
that the criteria may have been constructed hierarchically in terms of
a value tree.”
(V. Belton & T.]. Stewart, 2002, p. 80)
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Tree structure of objectives-criteria — an example

Vs

Household income}

G

)

Social benefits J\ # Jobs

-~

Water supply }

G
-

Agricultural output}

G

[Quality of life Economic benefits 4 Forestry output}

J

G
-

Secondary industry}

G
-

Area conserved}

-

Environmental benefits (— # Ecotypes conserved}

-

Ve

~N

\ Dissolved solids }

Land use problem River status Dry season flow

(V. Belton & T.]J. Stewart, 2002, p. 81) (
Flood Ievel}
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Multiple Criteria Hierarchy Process (MCHP)

B A S S T

{Gan i Cun |1 G | {Gen Il Ge)

{9y JH9aen {903 | {9eu ) {92

{9012 J{9a22 19032 | {9e1 | 9022
{9023 {9613

@@@@@@@@

_________________________________________________________________________________

. Corrente, S. Greco, R. Stowinski:

root criterion

1st level criteria

2nd level criteria

elementary criteria

alternatives

Multiple Criteria Hierarchy Process in Robust
Ordinal Regression. Decision Support Systems, 53 (2012) no.3, 660-674
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Multiple Criteria Hierarchy Process (MCHP) - notation

1 G

| { Gu,2)

i Gz |

{9(1,1,1)

{9(1,2,1)

{9(1,3,1)

{9(1,1,2)

{9(1,2,2)

{9(1,3,2)

S | T T T 1

49(1 2,3)

{ G |

{9(2,1,1):

{9(2,1,2)

49(213)

@@@@@@@@

_________________________________________________________________________________

G(oy — root criterion

Level criterion G,
G(l)lG(Z) {Grl r=(1)l(m)}

IG(2,2)
N(r)}

SICRILCIE IS
{G(r,])’ _]= 1,

Elementary criterion g,

EL-set of elementary criteria

EL:{g(lllll)’ 9(1,1,2)1"'1g(2,2,2)}

alternatives
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Multiple Criteria Hierarchy Process (MCHP) - notation

{Gan i Guy |l Gua | {Gen Il Ga)

{9 JH9wen [ 9asn | {92192

{9012 J{90,22 49032 {9e12 | 9022
{902 {9613

I | A J1 S0 A0 |

@@@@@@@@

_________________________________________________________________________________

E(G,) — set of elementary

criteria descending from G,

E(G(1))={91,1,1)9(1.1,2)
9i,2,1/91,2,2)19(1,2,3)1
91,3,1)19(1,3,2)F

E(G(2,2))=192,2,1y/92,2,2)F

Gk, — set of criteria descending
from G, and located at level k
gzw):{G(l,l)rGu,Z)rG(l,s)/

G2,1yr G2,2)rF
G 2)={92,1,1)9(2,1,2)19(2,1,3)r

9(2,2,1)19(2,2,2) %
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Multiple Criteria Hierarchy Process (MCHP) — main idea

» We wish to consider
preference relation >,
in each node of
the hierarchy tree,
e.g.:

a )b iff Uy(@) 2 Uy)(b)

C=,3)d iff Uy 3)(c)= Uy 3)(d)

e =,1)f meQU()ZLﬂLUU)

]
9dain) ] -[9(1,2,1) ] 91,31 ]
]

9(1,1,2) ] {9(1,2,2) 9(1,3,2)]
S | ‘E[ _________ T

{Gey i Gey |

*[9(2,1,1)] 9(2,2,1)]

*[9(2,1,2) ] d,2,2) ]

_________ Tt

@@@@@@@@

______________________________________
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Multiple Criteria Hierarchy Process (MCHP) — main idea

> In case of preferentially o
(1)

independent criteria,

Guy Jd Gua Jd G |

preference relation >,

should enjoy some intuitive

)
9di,1,1) ] *[9(1,2,1)] 9(1,3,1)]
]

9(1,1,2) ] *[9(1,2,2) 9(1,3,2)]

properties, e.q.:

ary b forallj=1,...,nr) = a=b

Gz

{Gey Jd Geo |

‘[9(2,1,1)] 9(2,2,1)]

*[9(2,1,2) ] 92,22 ]

o B TR S T

@@@@@@@@5

arayb, arazb, @arasb = a-wb o T
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Multiple Criteria Hierarchy Process (MCHP) — main idea

> In case of preferentially
G G2
independent criteria,
. G G G G G
preference relation >, wn J Co2 ) Cas | (Gen J(Gea |
) ) _ 9,11 |9 g3, 9,11 | 9221
should enjoy some intuitive EEN) CRER) CRREY (el ]
] 9(1,1,2)]‘[9(122)] 9(1,3,2)] *[9(2,1,2)] 9(2,2,2)]
properties, e.g.:
________________ T_‘[ ’L‘L‘H

ary b forallj=1,...,nr) = a=b

@@@@@@@@5

arayb, arazb, @arasb = a-wb o T

not(a =¢ b) forallj=1,...,n(r) = not(a=b)
not(a=p1b), not(@=p2b) = not(a=@mb)
a-b = ax=q b foratleastone jefl,... n(r)

a=pb = a=pb or a=ppb
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Multiple Criteria Hierarchy Process (MCHP) — main idea

> Any MCDM method
could be used to construct S Se
preference relation >, Guy Jd Gaa ) Gus ) {Gen J{ Gon )
in particular nodes 9(1,1,1)]‘[9(1,2,1)] 9(1,3,1)] {9(2,1,1)] 9(2,2,1)]
using the available 912 JH9a22 Y902 {9er2 ) 9e2n)
preference information:
e S T T
- AV @@@@@@@@5
> ELECTRE/PROMETHEE
> UTA
> ...

» The choice depends on type of aggregation & preference information

B. Roy, R. Stowinski: Questions guiding the choice of a multicriteria decision
aiding method. EURO Journal on Decision Processes, 1 (2013) no.1, 69-97.
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Multiple Criteria Hierarchy Process (MCHP) — main idea

» Consider the simplest preference

model

— weighted sum

> For any a<A, the value of a is:

U(a)
Wai,1,1)
Wai,2,1) 9
Wai,2,3) 9
Wa,3,1) 9
Wia,1,1) 9
Wia,1,3) 9

Wz,2,1) 9

111
1,21
1,2,3
1,31
2,11
(2,1,3)
(2,21

(a)+W112

)

(a *Wgi,2,2) 9
a)+wqz,) 9
)

)
@)+
)
a)+ Wy g
(a)+
)

(a +We,2,2) 9

91 2)(5) +

(1,2 2)(3) +

(1,3 2)(a)+

g 2)(3) +

(2 2,2)(3)

G(1) G(z)
Gan Jd Gua Jd Gy | {Gan Jd Gy |
da,1,1) ] *[9’(1,2,1) ] 9(1,3,1) ] {9(2 1 1)] g2 1)]
9(1,1,2) ] ‘[9(1,2,2) ] 9@1,3,2) ] {9(2 1,2) ] di2,2,2) ]

The unknown model parameters are
weights of elementary criteria only

We = > W,

tcE(G,)
- index of elementary

criterion g,

Wt:

W) =
teE G(l,l))

=Wai,1,1) T W,1,2)
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Multiple Criteria Hierarchy Process (MCHP) — main idea

> Each node is associated with

a marginal value function

> Elicitation of preferences and Sun JCua | Gua ] {Gen J{Gea |
analysis of recommendation CRERN | CRPRY| ERERY {9eunH{9e2n ]
in tree nodes: 9u12 JHIe22 ) 9us ) {9212 ) {922
weights adapt to preferences 4 q .

& preference relations (&) (b (o) (@ (&) (r) (@) ()

follow from weights, e.g.:

arazb < U(1,3)(a) = U(1,3)(b) , 1€,
Wia,3,1) 9(1,3,1)(5) +W,3)2) 9(1,3,2)(3) Z W 3,1) 9(1,3,1)(b) +W,3,2) 9(1,3,2)(b)
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MCHP with additive value function

» Marginal value function

associated with node r

Zut Gun i Gua Jd G, | 1Gen Jd G |

teE(G g1 JHIw20 JHIGws | {9e1n {92 ]

u.(-) - marginal value function 9u12 JHIw2 {9032 ] {9212 H9e2
monotonically dependent

on elementary criterion g, O | S TI --------- | R TI

@@@@@@@@
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MCHP with additive value function

» Total value function

associated with the root

G G G G G
_ Z Uy (a) e J{ Gup Jd Gua) | 1Gey Jd Gaa |
teEL 9(1,1,1) ] -[9(1 2,1) ] 9(1,3,1) ] ‘[9(2,1,1)] 9(2,2.1)]
9(1,1,2) ] {9(1,2,2) ] 9(1,3,2) ] {9(2,1,2) ] 9d2,2,2) ]

Ula) = =Uaq 1)(3) +Uq 1 2)(3) +Uq,2 1)(3) + U(1,2,2)(a) + U(1,2,3)(a) + U(1,3,1)(a) +
Ug 3,2)(@) + U11)@) + U ,2)(@) + U1 3)(@) + U 21)(@) + U o (@) =

= U(1,1)(a) + U(1,2)(a) + U(1,3)(a) + U(Z,l)(a) + U(z,z)(a) =

= Uy(a)+Up)a)

» How to construct marginal value functions u.(-), teEL ?
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MCHP with additive value function - preference elicitation by DM

m Direct or indirect ?

m Direct elicitation of nhumerical values of model parameters by DMs

demands much of their cognitive effort
m Indirect = through decision examples

m Decision aiding based on decision examples is gaining importance

because:
= Decision example is a relatively ,easy” preference information
m Decisions can also be observed without active participation of DMs

m Psychologists confirm that DMs are more confident exercising their
decisions than explaining them
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MCHP with additive value function - preference elicitation by DM

m Types of indirect preference information in particular nodes of the tree:

» Pairwise comparison: a is at least as good as b on criterion G,
a-b < U.a)=U,.(b)

» Intensity of preference: considering criterion G, or g,

a is preferred to b at least as much as c is preferred to d

(a,b)=" (c.d) < U (a)-U.(b)>U,(c)-U.(d)>0
(a’b)ii (C’d) N ut(a)—ut(b)zut(c)—ut(d)zo

J. Figueira, S. Greco, R. Stowinski: Building a set of additive value functions
representing a reference preorder and intensities of preference:
GRIP method. EJOR, 195 (2009) no.2, 460-486
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Checking for the existence of a compatible value function in node r

J

Vo u,e)ula)re if (o0 67)m: (o a) [

V=U,lc’)-u, (@) if (@, b7)~(c,a) ) > ()

va*,b*,c*,d"eAR

ut(x )—ut xf‘l)z 0, tekEL, k:2,...,mt(AR)

ut(x ) 0, teEL (EL:setof elementary criteria)
Z“t(xént): 1

teEL )

Since U, ( Zut , the only unknown of this LP problem

are marginal value functlons of elementary criteria u, and threshold ¢

239



Checking for the existence of a compatible value function in node r

J

Y
va*,b*,c*,d"eAR

DE e

ut(x )—ut xf‘l)z 0, tekEL, k:2,...,mt(AR)

ut(xﬂ) =0, teEL (EL:setof elementary criteria)
Z“t(xént): 1

teEL /

If EARis feasible and & > 0, then there exists at least one value function
compatible with the preference information
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Checking for the existence of a compatible value function in node r

If for the given preference information there is no compatible value

function, the user can:

m identify and eliminate , troublesome” pieces of preference information

(Mousseau et al. 2003),

m continue to use ,not completely compatible” set of value functions

with an acceptable approximation error (Jacquet-Lagréze & Siskos 1982),

m augment the complexity of the value function, e.g., pass from

additive linear to additive monotonic, or to Choquet integral
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Calculating necessary and possible preference relations in node r

m  For all pairs of alternatives a,beA, their performances on elementary
criteria g¢(a), g¢(b) add to m, characteristic points of marginal value

function u, , teEL; then EA" becomes E(a,b)

m Consider constraints:

U, (b) 2 U, (a)+ e } E¥ap) @) 2 Ui (b) } (E? @, b)

E(a, b) E(a, b)
m The necessary and the possible preference relations (LP problems):

a-.b<if EN(a,b) infeasible or €"(a,b)=max ¢, s.t.EN(a,b) is<0

asib <if E-(a,b) feasibleand €(a, b)=max ¢, s.t. E7(a, b) is > 0
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One can also work with a ,representative” value function

It may be desirable to have a total order and scores of alternatives

The idea is to select among compatible value functions that
value function which better highlights the necessary ranking, i.e.,
maximizes the difference of values for pairs of alternatives a and b,

such that a =N_b while not(b =N, a)

As secondary objective, we minimize the difference of values for
pairs of alternatives for which no necessary relation holds, i.e.,

such that not(a =N.b) and not(b =N, a)

Lexicographic sequence of G,'s may underline their relative importance

(G, is the root criterion or any level criterion, excluding those from EL)

S. Greco, M. Kadzinski, R. Stowinski:Selection of a representative value
function in robust multiple criteria sorting. Computers & Operations Research,

38(11), 1620-1637.

S. Corrente, S. Greco, R. Stowinski: Multiple Criteria Hierarchy Process in Robust

Ordinal Regression. Decision Support Systems, 53 (2012) no.3, 660-674 243



Properties of necessary and possible preference relations in node r

= Given two alternatives a,beA, and any non-elementary criterion G,:

() az?r',j)b forallj=1,...,n(F) = a=r'b
(i a= b forallj=1,..,n(), j=w, and a=wb = a= b

not(a zfr,j)b) forallj=1,...,nr) = not(a z’:b)

(iif) @

a-'b = a zfr,j)b for atleast one j e {l,...,n(r)}

Remark: hierarchical properties are expressed in terms of preference
> necessary (/)

> necessary & possible (i)

» possible (iii)
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Multiple Criteria Hierarchy Process (MCHP) - value function model

> Example:

Ranking of students wrt. hierarchical criteria of Mathematics & Chemistry

Mathematics Chemistry
_ |
_ Analytical Organic
Algebra Analysis Chem. Chem.

[ gdi,1,1) ] [ d,1,2) ][ d,2,1) ][9(1,2,2) ] [9(2,1,1) ][9(2,1,2) ][9(2,2,1) ][9(2,2,2) ]

Group Linear Calculus Functional Analytical Applied Organic Organic
Theory  Algebra Analysis Chem.I Anal.Chem. Chem.I Chem.II

> 15 students: A, B, C, D, E, F, H,I,L, M, N, O, P, QR

245



Multiple Criteria Hierarchy Process (MCHP) - value function model

> Performances of students on elementary criteria

Elementary
criterion vs.| - gy 1,1 d(1,1,2) d(1,2,1) d(1,2,2) d2,1,1) d2,1,2) d(2,2,1) d(2,2,2)
Student

A Very bad |Very good| Very bad Good | Very good |Very good | Very bad Bad
E Bad Very good| Medium |Very good| Very bad Bad Very bad | Very bad
C Very good| Medium | Medium | Very bad |Very good| Good Bad Medium
D Medium | Very bad Bad Very bad | Very bad Bad Medium | Very bad
E Very good | Very good| Medium | Medium Bad Very good Bad Very bad
F Good Bad Bad Medium | Very bad | Very bad | Very good | Very good
H Medium | Very bad Bad Bad Very good | Very bad | Very bad | Very bad
I Good Good Good Medium | Medium Bad Good Very bad
L Good Very bad Bad Good Good Very bad |Very good| Good
M Medium | Medium | Medium Bad Medium | Medium |Very good| Good
N Good Bad Very good| Medium Bad Very good | Very good| Medium
O Good Medium Bad Bad Medium Bad Very good | Very bad
P Bad Very bad Bad Medium Bad Very good| Medium | Very bad
Q Very good | Very good| Medium | Very bad Bad Medium | Medium Bad
R Good Good Bad Very bad Bad Bad Medium | Medium
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Multiple Criteria Hierarchy Process (MCHP) - value function model

» Dominance relation in the set of students
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Multiple Criteria Hierarchy Process (MCHP) - value function model

» On Chemistry, student I is preferred to student H
U(z)(]:) > U(z)(H) =
= U(2,1)(I) T U(z,z)(I) = U(2,1)(H) + U(z,z)(H) <
= U(2,1,1)(I) + U(2,1,2)(I) + U(2,2,1)(I) + U(z,z,z)(I) >
> U(2,1,1)(H) + U(2,1,2)(H) + U(2,2,1)(H) + U(2,2,2)(H)

> Necessary preference relation after the 1st piece of preference information

m° B sl mv a0 Qv
. C B R“‘HR\\\\\\\ \
. E -'“-\_ﬁ-hq__:\ :\"'\\:\\\ \\\ \
ey .
&= F --_,\;\\_::b&\\\ \
—
@ i P i H S 0
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Multiple Criteria Hierarchy Process (MCHP) - value function model

» On Analytical Chemistry, student E is preferred to student H

U(2,1)(E) > U(2,1)(H) A

& Up11)E)+ Upa,2)(E)> U 11y(H)+ Uz q,2)(H)

> Necessary preference relation after the 2" piece of preference information

WA me @R
B o

= }//

T ’

.F
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Multiple Criteria Hierarchy Process (MCHP) - value function model

» On Mathematics, student N is preferred to student Q
U(l)(N) > U(l)(Q) =
< U+ U 2)(N) > Ug,1)(Q) + U Q) =
< Upg,1,0)(N) + U 1,2)(N) + U, 2,0)(N) + U 2,2)(N) > U1, Q) + Ui 0,2)(Q) + Ui 2,1)(Q) + Ui 2,2)(Q)

> Necessary preference relation after the 3" piece of preference information

()
s
BcC
BF
L
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Multiple Criteria Hierarchy Process (MCHP) - value function model

» On Chemistry, student L is preferred to student P

U(z)(L) > U(z)(P) =

o U(2,1)(|—) + U(z,z)(l—) > U(2,1)(P) + U(z,z)(P) o

Uy L)+ UL + e b) + Uez2)L) > UenP)+ Ua,z)(P) + Ue,zyP) + Ue 2,2 P)

> Necessary preference relation after the 4t" piece of preference information

E
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Multiple Criteria Hierarchy Process (MCHP) - value function model

> Necessary preference relation on Mathematics

Necessary
preferencel Mathematics Algebra Analysis
- =Ny =N, 1) =Ni1,2)
A
B AP AP A,CD,EFHLM,OPQR
C D D,F,H,LLM,N,O,P D.Q,R
D H,P R
E CDFHMOPQRABCDFHILMNOPQR| CDFHMOPQR
F DH,P D,H,LN,P D,H,O,P,R
H D D,P D,O,R
I D,F,.HM,OPR D,F,H,LLM,N,O,P,R C,D,EFHMOPQR
L D,H,P D,H,P ADFHOPR
M DH D,HP C,DH,0,QR
N C,D,F.HP,QR D,F.HLP C,D,E,F.HIMOP,Q,R
O D,H D,F.H,LLM,N,P D,HR
P D,F,HO,R
Q C,D,R AB,CD,EFH,ILMNO,PR CD,R
R D D,F.H, LLLM,N,O,P D

< Remark: the necessary preference relation NxN;,C, NxN;,Q, NxN R

is true on Mathematics but it is not true at the level below on Algebra
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Multiple Criteria Hierarchy Process (MCHP) - value function model

> Necessary preference relation on Chemistry

Necessary
preference Chemistry Analytical Chemistry Organic Chemistry
- =Ny =N 1) >=N2,2)
A B.H B,C,D,E,F H,ILLLM\N,O,P,Q,R B,H
B D,F H
C B.H B,D,F.HILMOQR ABEH
D B B,F B.EH,P
E B.H B,D,F.HLNPQR B,H
F ABCDEHILMN,OPQR
H F.L B
I B,.D,H B,.D,F.OR B.D,EH,P
L B,D,H,P F ABCDEHIMNOPQR
M B,D,H,1,0,Q,R B,D,F,I,O.QR AB,CDEHILNOPQR
N B,D,EH,P,Q,R B,D,E,F,H,L,P,QR AB,C,D,EH,IOPQR
O B.DH,I B.D,F.IR B.D.EH.IP
P B,.D,E.H B,.D,E,F.HLN,QR B,.D.E.H
Q B.D B,.D,F.R ABDEHP
R B,.D B,D,F ABCDEHPQ

< Remark: the necessary preference relation IxV,H, Lx",,B,D,H,P, OxN,H

is true on Chemistry but it is not true at the level below on Analvytical Ch.
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Multiple Criteria Hierarchy Process (MCHP) - value function model

» Ranking of students by representative value functions

Rank Student
1 M(0.8808)
2 N(0.8622)
3 F(0.6690)
3 L(0.6690)
3 A(0.6690)
6 1(0.5426)
7 C(0.4915)
8 0(0.4893)
9 R(0.4654)
10 Q(0.4617)
11 P(0.4190)
11 E(0.4190)
13 B(0.3808)
14 D(0.2117)
15 H(0.1690)
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Multiple Criteria Hierarchy Process (MCHP) - value function model

m Extensions of MCHP applied to value function model

s Gradual credibility of provided n pieces of preference information:

. N N P P
for any G,, nested relations =r1 C...C>=r,p aNd =1 D... 2= p

s Extreme ranking analysis: for any G,, one can see the best and the

worst rank of each alternative assigned by compatible value functions

m Ordinal classification using UTADISCM>; preference information in
terms of exemplary assignments wrt any G,; recommendation in

terms of possible & necessary assignments C”.(a), CV.(a), va,r

= Group decision: for any subset D of DMs, and for any G,, one gets
4 types of preference relation - VN (D), VP (D), =PN.(D), =P (D)
S. Corrente, S. Greco, R. Stowinski: Multiple Criteria Hierarchy Process in Robust
Ordinal Regression. Decision Support Systems, 53 (2012) no.3, 660-674
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MCHP and Choquet integral preference model

m For each non-elementary criterion G,, located at level h of the tree,
the set of descending criteria located at level k>h is denoted by Gk, :

Gty = 1Git,1): Ge,20 G 3) level:
for r=Q1), h=1, k=2 =S - =0

3 92,1, 92,1,2)r 92,1,3) Gay Jd Gua Jd Gus) | 16y JlGea ] k=2
g(z):{gc,z,w 92,22 } Tonn)|(Gazn){@ann)  {(Gean)|Fezn) k=3
for r=(2), h=1, k=3 912 JH9a00 ) {9052 ) {912 ) H{9e2 ]

m To each alternative acA, there corresponds a performance vector

[gtl (a)/---/ gtn (a)] ’ where n = ‘EL‘

S. Angilella, S. Corrente, S. Greco, R. Stowinski: Multiple Criteria Hierarchy Process
for the Choquet integral. [In]: R.C. Purshouse et al. (eds.): EMO 2013,
LNCS 7811, Springer, Berlin, 2013, pp. 475-489
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MCHP and Choquet integral preference model

m Given capacity u defined on the power set of EL (elementary criteria),
a capacity yf on the power set of GX.:

uk :29% 5 ]0,1]
such that

forall F c G uf(f):%g;))))

m Considering non-elementary criterion G, (in node r) and alternative acA,
given capacity p defined on the power set of EL, the Choquet integral
score of a:

g(a) if g, < E(G;)

where a. is such that gt(ar)z{ D i
Wi
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MCHP and Choquet integral preference model

> Example:

Ranking of students wrt. hierarchical criteria of Science & Humanities

Mathematics Physics Literature  Philosophy

» 9 students: a, b, c,d, e, f, g, h, k
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MCHP and Choquet integral preference model

» Evaluation of students on elementary criteria

Student|Mathematics| Physics | Literature | Philosophy
a 18 18 12 12
b 16 16 16 16
C 14 14 18 18
d 18 12 16 16
e 15 15 18 14
f 18 14 14 18
g 15 17 18 16
h 10 20 10 20
k 14 14 14 14
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MCHP and Choquet integral preference model

» MObius measures on elementary criteria

Mathematics m({g 1)) 0.29
Physics m({g2)}) 0.19
Literature m({gd:,1))) 0.29
Philosophy m({g:2’) 0.19
Mathematics & Physics | m({g; 1y,9(1,2)+)| -0.1
Mathematics & Literature [m({g 1y,9(21)}) 0
Mathematics & Philosophy | m({g 1y,9(2.2)}) 0
Physics & Literature m({9( 2),92.1))) 0
Physics & Philosophy m({g12),90221)| 0.24
Literature & Philosophy | m({g(; 1y,9(22y})| -0.1
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MCHP and Choquet integral preference model

» Choquet integral score
wrt Science (Ch,;), Humanities (Ch ), and Overall (Ch,)

Ranking

Ch,(a) 18 Ch,(f) | 17.05
Ch,,(a) 12 Ch () 16
Ch,(a) | 14.28 | ch(H | 15.92
Ch,(b) 16 Ch,1(g) 16
Ch,,(b) 16 Ch,(g) | 17.52
Ch,(b) 16 Ch(g) | 16.58
Ch,,(c) 14 Ch,(h) ;'1'3'.' 5:
Ch,5(c) 18 Ch,(h) | i13.5
Ch(c) | 15.52 | ch(h) | [15.06
Ch,(d) | 16.57 | Chu(k) | 14
Ch,,(d) 16 Ch, (k) 114 |
Ch,(d) 15.26 | Ch,(k)
Ch,,(e) 15

Ch(e) | 17.05

Ch(e) | 15.54

Overall:
g-b-f-e-c-d-h-a-k
Science:
a-f-d-b,g-e~c,k=h
Humanities:

c-g-e-b,d,f-k-h-a
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» Shapley values & interaction indices

MCHP and Choquet integral preference model

» Shapley value of each elementary criterion wrt parent criterion G,

G,, r=(1),(2) Science Humanities
G(rwy Mathematics | Physics | Literature | Philosophy
w=1,2,3,4
*“(G(rm)) ‘063 ‘037 0.63 0.37

> Shapley value of each elementary criterion wrt root criterion G,

G(r,wifz":go) Mathematics| Physics | Literature | Philosophy
W= I I I
?(Gewy) | 0.24 0.26) 0.24 0.26
» Shapley value & interaction index for Science (G(;)) & Humanities (G,))
G wy, F=(0), w=1,2 Science Humanities
(Plr(G(r,w)) 0.5 0-5
(Plr({G(r,l)l G(r,2)}) 0.24
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Is it reasonable?

A friend of the Einstein family, Max Talmey, tutored Albert and
recommended him the “Critique of pure reason” when when he was 12
years old. This became a new Bible for him and he called it his "holy
geometry book".
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MCHP and Choquet integral assessed using ROR

m Types of indirect preference information supplied by the DM:

» Considering some reference alternatives a,b,c,dcA

» Pairwise comparison: a is at least as good as b on criterion G,

asb < Ch.(a)> Ch,(b)

» Intensity of preference: considering criterion G,,
a is preferred to b at least as much, as c is preferred to d

(a,b)>: (c,d) < Ch (a)-Ch (b)>Ch (c)-Ch (d)=0
> Considering some criteria G,;,G,,,G,3,G,,€ G, :

» G, is at least as important as G,,

(Pll'< (Grl) 2 (Pll'< (GrZ)
» G.; and G,, are positively (negatively) interacting

(Pllf (Grll Gr2) Z € ((PII'< (Grll Gr2) < _8)
> G,, is preferred to G,, at least as much as G,; is preferred to G,,

(D:( (Grl)_gpﬁ (GrZ)2 gp:( (Gr3)_(0rk (Gr4)2 0
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MCHP and Choquet integral assessed using ROR

Information provided to the DM:

s Applying Robust Ordinal Regression to Choquet integral (NAROR),
i.e., solving a LP problem for each pair of alternatives a,bcA

in each node r, one gets 2 partial relations (necessary & possible):

» a is weakly preferred to b wrt G, for all compatible capacities
a-N_b
> a is weakly preferred to b wrt G, for at least one compatible capacity

ax>F. b

Remark: in the LP problem of ROR, the only decision variables are
2-additive Mobius function values representing capacities p defined on

the power set of elementary criteria

S. Angilella, S. Greco, B. Matarazzo (2010). Non-additive robust ordinal regression:
A multiple criteria decision model based on the Choquet integral.

European Journal of Operational Research, 201(1), 277-288.
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MCHP and Choquet integral assessed using ROR & SMAA

MCHP & ROR & Choquet integral identify a set of capacities compaptible
with preference information
To explore the set of compatible capacities, we use the Hit-And-Run

method (Tervonen et al. 2013) & Stochastic Multiobjctive Acceptability
Analysis (SMAA - Lahdelma, Hokkanen, Salminen 1998) that yields:

~ the rank acceptability index b/, . — probability that alternative a, gets

position / in the ranking obtained wrt criterion G,

» the pairwise winning index p.(a,b) - probability of preference

of a over b on criterion G,

S. Angilella, S. Corrente, S. Greco: Stochastic multiobjective acceptability
analysis for the Choquet integral preference model and the scale construction
problem. European Journal of Operational Research, (2015), 240(1), 172-182.

S. Angilella, S. Corrente, S. Greco, R. Stowinski: Robust Ordinal Regression &
Stochastic Multiobjective Acceptability Analysis in Multiple Criteria Hierarchy
Process for the Choquet integral preference model. Omega, 2015 567



Decision problem

ooy

’]'“L

AN //\\

.‘]f-:l.l] ﬁr[l,:]

Elementary subriterion

ASD CWE ROT PDP
Gn,m ) _Ifj'r_:u } _t]rl;z,zy 2.4 Qi 4
Diescript b

Student-Staff Ratio (S5R)
Graduating on Time [GT)
Arademic Staff with Doctorates [ASDY)
Contact with Work Enwironment [CWE]

The number of students per member of the academic staff

The percentag= of graduates that graduated within the time expected for their bachelar program
The percentag= of academic staff holding a doctorate

A composite measure repressnting at bachelor level: (1) the inclusion of internships or phasss

of practical experience in the curniculum; (2} the percentage of students daing an internship

(3} t=aching by practitioners from outside the university departments

Fes=arch Fublications [RF)

Citation Rate (CR)

Fes=arch Orientation of Teaching (ROT)

Post-Doc Positions (PDP)

The number of research publications indesed in the Web of Soence databass, whers at least

one author is affiliabed to the universty

The average number of times that the university department’s research publications (over the period 2008-2011)
get cited in other reseanch, adjusted [normalized) at the global lewel for the field of scence

and the year in which a publication appeared

The degres to which the =ducation is informed by ressarch in the field (based on a survey of students

in the program)

The number of post-doc positions relative to the full-time equivalent number of academic staff
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Performances of the universities on the considered criteria

)
TL R
University Country | 55R GT ASD CWE RP CR ROT PDP
WHU School of Management (L) Germany 2 5 5 3 5 5 5 2
Aarhus U (L&) Denmark 2 2 1 2 & 3 3 5
U Tampere (L) Finland 2 2 3 3 & 3 3 5
Lille Cathalic U {Us) France 5 1 4 4 5 4 3 1
U Paris West (Us) France 3 4 5 4 5 2 2 1
Palytech, U Milan (L&) Italy 5 3 2 4 5 4 3 5
U Trento (L) Italy 2 5 1 1 4 5 3 5
Vilnius Gediminas Technical U (Ug) Lithuania 5 4 3 2 5 5 2 2
U Porto (Lk) Portugal 5 2 4 2 5 4 4 2
Bucharest U Economic Studies Marketing { Uha) Romania 4 4 4 3 b 2 2 ]
Bucharest Faculty of Business Administration (U11) Romania b 4 b 3 b 2 3 3
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Preference information provided by the DM

# SSR and GT are positively interacting

2 GT and CWE are positively interacting
@2 ASD and ROT are negatively interacting
@ RP and ROT are negatively interacting
# RP and CR are negatively interacting

# CWE is more important than PDP when they are referred to the root
criterion Gg

@ The difference of importance between GT and SSR is greater than the
difference of importance between CWE and ASD when they are referred to
the root criterion Gy

2 With respect to R, university U5 is preferred to university Us
# With respect to TL, U is preferred to Ug
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MCHP and NAROR results

(a) Teaching and Learning (TL) (b) Research (R)
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MCHP and SMAA (Rank Acceptability Indices)

(r) Research

(q) Teaching and Learning
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RAI at comprehensive level
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MCHP and SMAA (Pairwise Winning Indices)

(s) Teaching and Learning (t) Research
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Complete rankings of universities by the most

representative capacity

fdilan Podytech

Duchzrmgt Gy

(c) Comprehensive (d) Teaching & Learning (e) Research
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Interactive optimization with
Robust Ordinal Regression
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Interactive optimization with Robust Ordinal Regression

m Robust Ordinal Regression in a loop:
preference elicitation with constructive learning

m Results are robust, because they take into account
partial preference information

Decision Preference
maker won
Preference
Robustness model
analysis

Set of compatible
preference model

arameters
Necessary and P

possible results
(ranking, sorting)




Interactive optimization with Robust Ordinal Regression

Input (preference information)

Pairwise comparisons
of solutions

Best (or worst) solution
out of a set

Ranking of several
solutions

Ordinal or cardinal
intensity of preference
for pairs of solutions

Sorting of solutions into
quality classes

Output (preference model)

Value function
Outranking relation
Artificial neural network
Decision rules

Decision trees
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How complex should the preference model be?

= Model too simple
=) not able to represent user’s preferences

. e -"@ ﬂ
= Example: linear model unable to capture x

preference information

= Model too complex/flexible
=) NO generalization power, all solutions enter only one front,
takes very long to learn all the parameters

= Example: Dominance relation, general additive model with
monotonic marginal value functions

~Everything should be made as simple as possible
— but not simpler” [Albert Einstein]
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Preference information and model complexity

Possibly no fully

compatible model
Fully specified model

1. Discard preference
information

2. Find a model with
minimal error

Many compatible value functions

Preference information

1. Pick ,representative” value function
2. Consider all compatible
value functions

Model complexity
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The NEMO framework [Branke, Greco, Stowinski, Zielniewicz 2009,
2010, 2014] [Branke, Corrente, Greco, Stowinski, Zielniewicz 2014]

m NEMO integrates ROR into NSGA-II (Deb et al. 2000)

m Every g iterations, the DM is expressing preferences by comparing
pairwise some non-dominated solutions in the current population

m Preference model:

r.71W,- ><f,-(a)

| =

= Linear value function U(a)=
= General additive value function U(a)=>"" u[f,(a)]
= Choquet integral  U(a)=>"" u(F)(f,(a)-fi_1(@)

m No scaling of objectives is necessary — NEMO handles
heterogeneous objectives



The NEMO framework

m NSGA-II: dominance ranking of solutions from a current population

o—eo © -
NSGA-II Within the same front, order

® the individuals with respect
o— to the crowding distance

O
O —>@

= NEMO-0: in non-dominated fronts, individuals are ranked by
representative value function compatible with preference information

e——0 5® NEMO-0

1

p 2
O —@
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The NEMO framework
m NSGA-II: dominance ranking of solutions from a current population

oe—0® @ NSGA-II

Py ./>C Within the same front, order
the individuals with respect
® >0 to the crowding distance

m NEMO-I: replaces dominance relation by pairwise necessary
preference relation

O(p2) LPs to solve — Y ()

in every iteration >@® >.\‘NE|V|O-I

@
o N \
®

—
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The NEMO framework

m NSGA-II: dominance ranking of solutions from a current population

o—eo ©
NSGA-II
® ./>Q Within the same front, order
the individuals with respect
® —->@ to the crowding distance

= NEMO-II: put in the first front solutions that are preferred to all others
in the population for at least one
compatible value function 3

1 /M _
only O(p) LPs to solve .___@ TEMO I1

Never preferred ® ° ®

) under
./ NEMO-II-linear > i. ®

Front of NEMO-II < Front of NEMO-I < Front of NSGA-II
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Recent work: NEMO-II-Choquet

m Use Choquet integral as preference model
= Well-accepted model in decision theory
= Allows to model interaction between objectives

m Adapt complexity of preference model to complexity of preferences
s Start with linear model

= Switch to 2-additive Choquet once no linear compatible value
function can be found

> Every g iterations the user is expressing preferences by comparing
two non-dominated solutions

» Put in the first front solutions that are preferred to all others
in the population for at least one compatible value function

» Within the same front, order the individuals with respect to the
crowding distance
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A particular case of the Choquet integral: n=2
If n=2, then...
Ch,(f, f,) = m(L)) f; + m(i2)) £, + m(iL,2)) minify, £} =

{( m(dp)+m(L,2)) f, + m(2))f, if f, <,
(L) £ +(m(2) + m(L,2)) f, i £ =1,

ma:_m@D+mm2»

m(i2))

286



Isoquants of the Choquet integral for two criteria — special cases

m 2-additive Choquet — positive interaction (synergy)

A

l] p———————————————e—-

0 >

0 lo. 1

Ula) =u(ifi))fi(@)+nlf ) @)+ [uf, ) - n(if ) - w(if ) minif,(a), f,(a)f = ¢

positive interaction when u({f;,f}) > u({fi}) + (s )
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Isoquants of the Choquet integral for two criteria — special cases

m 2-additive Choquet — positive interaction (synergy)

A
I e e et :
1
:
=
:
:
:
1
:
1
|
P IS S )
i
; greater
| capacity=weight
i of f,
: than before
0 N
0 c 1

Ula) =n(if))fi(@)+ ) f(@)+ [ulfy, £ 1) - nlf ) - nlf; Y minif, (@), (@) > c

positive interaction when p({f;,f}) > u({f,}) + n({f})
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Isoquants of the Choquet integral for two criteria — special cases

2-additive Choquet - negative interaction (redundancy)

1

O
o

A B & B & 4 & 0 2 3 a2 3 4 2 3 4 3 3 2 3 3 2 3 3 5§ 3 2 F 3 I

n U -

=
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Graphical interpretation




Scaling of objectives




NEMO-II-Ch main points

m Start with the linear value function as preference model

m Ask every g iterations DM’s preferences by comparing
two non-dominated solutions

= Order the solutions by checking if there exists at least
one compatible model for which x is preferred to all other
solutions

= Within the same front order the solutions with respect to
the crowding distance

m Switch to the 2-additive Choquet integral preference
model as soon as the linear model is not able to
represent the preferences of the DM anymore



Why NEMO-II-Ch? (DTLZ1-5D)

Convergence indicator

10

0.1

0.01

-0-NEMO-II-Ch

-&~NEMO-II-L

—4—2-additive Choquet from the beginning
-a-NEMO-II-L then Choquet all variables
---EA-UVF
—Optimum

0 50 100 150 200 250 300 350 400 450 500 550 600
Generations

DM compares two n-d solutions in the same front every 10 iterations

It is better to start with the simplest model (the linear one);

Passing to the 2-additive Choquet integral preference model produces better
results than passing to the complete Choquet integral model;

In NEMO-II-Ch interactions between pairs of criteria are considered.



Thank you
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