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Ordinal regression and inductive learning approaches 
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Problem statement – multicriteria choice, ranking and sorting 

 Consider a finite set A of actions (alternatives, solutions, objects)                        

evaluated by m criteria from a consistent family F={g1,...,gm}; 

I={1,…,m} 

 The only objective information is dominance relation in set A 

 

  gi(x) 

gj(x) 
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Bernard Roy on the constructive approach of MCDA 

 

 

 

 

 

 

 

“MCDA must be based on models that are, at least partially, 

co-constructed through interaction with the decision maker. 

The co-constructed model must be a tool for looking deeper 

into the subject, exploring, interpreting, debating and even 

arguing.”(Roy 2010) 
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Bernard Roy on the recommendation in MCDA 

 

 

 

 

 

 

 

“The content of the recommendation may be only the fruit of 

a conviction constructed in the course of a process 

necessitating multiple interactions, bringing into play a variety 

of actors involved in a complex managerial environment.” 

(Roy 1993)” 
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Taxonomy of Decision Problems 
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P : Choice problem (optimization) 
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P1 : Classification to preferentially non-ordered classes 
       (classification in the strict sense) 
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P2 : Classification to preferentially ordered classes (sorting)   

Class 1 
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Classification in the strict sense – example of traffic signs 

W: Warning; I: Interdiction; O: Obligation 
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Sorting – example of multiple criteria sorting of students 

bad medium bad bad S8 

bad bad bad bad S7 

good good good good S6 

good good medium good S5 

good medium medium medium S4 

medium medium medium medium S3 

medium bad medium medium S2 

bad bad medium good S1 

Overall class Literature (L) Physics (Ph) Mathematics (M) Student 
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P : Ordering problem (ranking) 
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Multiattribute Utility Theory 
(MAUT) 
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Setting 

 N={1,2,…,n} set of attributes 

 Xi : set of possible values of the i-th attribute 

 X=        = X1  X2 … Xn={(x1,…, xn):x1X1,…, xnXn}: set of 

all conceivable alternatives  

 X includes the alternatives under study. . . and many others! 

 : weak preference relation on X such that for all x,yX 

x  y 

means 

«x is at least as good as y» 

 xy  x  y and not y  x (which means «x is preferred to y») 

 xy  x  y and y  x (which means «x and y are indifferent») 

X i

n

i 1

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Marginal preferences 

 J={i1,…,ik}N 

 XJ=                  =Xi1  Xi2 … Xik={(xi1,…, xik):xi1Xi1,…, xikXik}: set 

of all conceivable alternatives with respect to attributes 

from J 

 X-J=                :set of all conceivable alternatives with respect 

to attributes different from J 

 J: weak marginal preference relation on XJ such that for all 

xJ,yJXJ 

xJ J yJ  (xJ,z-J)  (yJ,z-J) for all z-JX-J 

which means 

«xJ is at least as good as yJ» 

 In case J={i}, we write  i instead of {i}. 

X i
Ji


X i
Ji

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Additive value function model 

 For all all x,yX 

x  y   

 

with ui:XiR. 

 

 Sometimes a simplified model is considered: if XRn and for all 

attribute i  N 

xi  yi  xi  yi 

 For all x,yX 

x  y   

with wi non negative for all i  N. 
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Independence 

  is independent for JN if for all xJ,yJXJ 

[(xJ,z-J)  (yJ,z-J) for some z-JX-J] 

 

[(xJ,z-J)  (yJ,z-J) for all z-JX-J] 

 If  is independent for all JN, with J non-empty, we say that    

 is independent.  

 If  is independent for all {i}, i  N, we say that                        

 is weakly independent.  

 If  is weakly independent, then dominance arguments apply, 

i.e. for all x,yX 

[xi i yi for all iN] x  y 
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Independence: illustrative example 

 

 

 

 

 

 

 

 

 

 

If S2S1, then S4S3 

If (xJ , z-J)  (yJ , z-J), then (xJ , z’-J)  (yJ , z’-J)  

Students Mathematics Physics Literature 

S1 Good Medium Bad 

S2 Good Bad Medium 

S3 Medium Medium Bad 

S4 Medium Bad Medium 

z-J,z’-J xJ, yJ 
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Independence: illustrative example 

 

 

 

 

 

 

 

 

 

 

S2  S1    S4  S3 

Students Mathematics Physics Literature 

S1 Good Medium Bad 

S2 Good Bad Medium 

S3 Medium Medium Bad 

S4 Medium Bad Medium 
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Is independence a reasonable hypothesis? 

 

 

 

 

 

 

 

 

 

 

D2  D1 and D3  D4 

  

Dinner Main course Wine 

D1 Meat White 

D2 Meat Red 

D3 Fish White 

S4 Fish Red 
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Is independence a reasonable hypothesis? 

 

 

 

 

 

 

 

 

 

 

D2  D1    D4  D3 

  

Dinner Main course Wine 

D1 Meat White 

D2 Meat Red 

D3 Fish White 

S4 Fish Red 
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Basic results for Multiattribute Utility Theory 

If 

 restricted solvability holds,  

 each attribute is essential, 

 

then the additive value function holds if and only if 

 

  is an independent weak order satisfying the 

Thomsen and the Archimedean conditions. 

In case there are more than two attributes, Thomsen 

condition can be forgotten.  
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How to assess a multiattribute value function? 

Many methods: 

- Direct rating 

- Bisection techniques 

- … (e.g. Peter C. Fishburn , Methods of Estimating 

Management Science, 13(7), 1967, 435-453, where 

24 methods are presented) 

-   
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How to assess tradeoff ? 

 Consider the simplified model  

x  y   

 For xX and i,j  N, consider kij such that 

(x1,x2,…, xi+1,…, xj,…, xn)  (x1,x2,…,xi,…,xj+ kij,…, xn) 

  We get 

w1x1+w2x2+…+wi(xi+1)+…+wjxj+…+wnxn  

= 

w1x1+w2x2+…+wixi+…+wj(xj+ kij)+…+wnxn 

 From which… 
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How to assess tradeoff ? 

 From which 

wi = wj kij 

 and therefore 

kij= wi / wj  

 This means that the weights in the MAUT model are related to 

the concept of tradeoff (I can renounce to kij on attribute j, in 

order to increase one unit on attribute i). 

 Observe that coherence condition is that for all i,j,lN 

kij= kil  klj 

(wi / wj = wi / wl    wl / wj ) 
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Holistic preference information 

 Psychologists confirm that Decision Makers (DMs) are more confident 

exercising their decisions than explaining them 

 The most natural is a holistic pairwise comparison of some actions 

relatively well known to the DM, i.e. reference actions 

A 
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Holistic preference information 

 Psychologists confirm that DMs are more confident exercising their 

decisions than explaining them 

 The most natural is a holistic pairwise comparison of some actions 

relatively well known to the DM, i.e. reference actions 
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u 

DM 

x  y 

z  w 

x  w 

y  v 

u  t 

z  u 

u  z 

holistic 
preference information 
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Holistic preference information 

 Question: what is the consequence of using on the whole set A  

this information transformed to a compatible preference model ? 

A 

AR 
x 

t z 

w 

v 

y 

u 

DM 

x  y 

z  w 

x  w 

y  v 

u  t 

z  u 

u  z 

preference information 

analyst Preference model  
compatible  

with preference  
information 

Apply the preference model on A 
What 

ranking 
will result? 



31 

Principle of the ordinal regression 

 The preference information is given in the form of  

partial preorder on a subset of reference actions ARA 

 Additive value (or utility) function on A:  for each xA  

  

 where ui are non-decreasing marginal value functions 
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The UTA method 



33 

The UTA method       (Jacquet-Lagreze & Siskos 1982)  

 Marginal value of action xiA is approximated by linear interpolation 

 

? 

? 

? 

? 
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The principle of the ordinal regression – the UTA method 
            (Jacquet-Lagreze & Siskos 1982)  

 The marginal value functions (breakpoint variables) are estimated by 

solving the LP problem 
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“The most representative value function” of UTA: UTAMP1 model 
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UTAMP1 model        (Siskos & Yannacopolous 1985)  

 After verifying that the set of compatible value function is not empty, 

the “most representative” value function is estimated by solving the 

following LP problem,  
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Intuition behind the Robust Ordinal Regression 
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 Remark 1. If there is one value function representing the preferences 

of the DM, in general, there are infinitely many others. 

 Remark 2. In general, each one of these infinitely many value 

functions, gives a different ranking of actions from A. 

 Why to consider only one of these infinitely many value 

functions?   

 

Basic question 
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One should use all compatible preference models on set A 

 Question: what is the consequence of using all compatible preference 

models on set A ? 
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preference information 

analyst 
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preference model  

compatible  
with preference  

information 

What 
rankings 

will result? 

Apply all compatible instances on A 
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 Types of indirect preference information in particular nodes of the tree: 

 Desired ranks of alternatives, e.g., 

 

 

Rank related preference information 

M. Kadziński, S. Greco, R. Słowiński: RUTA: a framework for assessing and  
   selecting additive value functions on the basis of rank related requirements.  
   OMEGA, 41 (2013) no.4, 735–751 
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The UTAGMS method 
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 DM is supposed to provide the following preference 

information:  

 a partial preorder    on AR, such that x,yAR  

 x  y    „x is at least as good as y” 
 

The UTAGMS method (Greco, Mousseau & Słowiński 2004, 2008) 
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 A value function U is called compatible if it satisfes  

the constraints corresponding to DM’s preference information: 

a) U(x)  U(y)  iff  x  y 

b) U(x) > U(y)  iff  x  y 

c) U(x) = U(y)  iff  x  y 

d) ui(x)  ui(y)  iff  x i y,  iI 

 Moreover, the following normalization constraints should also be taken 

into account: 

e) ui(i)=0,  iI 

f)   

 

 

The UTAGMS method  (Greco, Mousseau & Słowiński 2004, 2008) 

  1
Ii

iiu
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 If constraints a) – f) are consistent, then we get the two weak 

preference relations N and P : 

 the necessary weak preference relation: for all x,yA,    

x N y  U(x)  U(y) for all compatible value functions  

(i.e. for all compatible value functions x is at least as good as y) 

 the possible weak preference relation: for all x,yA,  

x P y  U(x)  U(y) for at least one compatible value function  

(i.e. for at least one compatible value function  

x is at least as good as y) 

The UTAGMS method  (Greco, Mousseau & Słowiński 2004, 2008) 
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 Basic properties: for all x,y,zA 

 x N y    x P y 

 N  is a partial preorder (i.e. N is reflexive and transitive) 

 x N y  and y P z   x P z 

 x P y  and y N z   xPz 

 x N y  or  y P x 

 P is strongly complete (i.e. for all x,yA,  xPy  or  yPx) and 

negatively transitive (i.e. for all x,y,zA,  not xPy  and not yPz  

not xPz ), (in general, P is not transitive) 

 Giarlotta and Greco (2013) proved that the first 5 properties 

characterize N  and P . 

 

The UTAGMS method (Greco, Mousseau & Słowiński 2008) 
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The UTAGMS method  (Greco, Mousseau & Słowiński 2004, 2008) 

 The marginal value function ui(xi) 

 

 

 

 

 

 

 

 

 

ui(xi) 

gi 
0 

i yi i wi zi vi 

y,v,w,zAR 

Characteristic points of marginal value functions are fixed  

on actual evaluations of actions from set A  
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GRIP – Generalized Regression with Intensities of Preference 
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GRIP – Generalized Regression with Intensities of Preference 
             (Figueira, Greco & Słowiński 2005, 2008) 

 GRIP extends the UTAGMS method by adopting all features of UTAGMS 

and by taking into account additional preference information :  

 comprehensive comparisons of intensities of preference between 

some pairs of reference actions,  

e.g. „x is preferred to y at least as much as w is preferred to z” 

 partial comparisons of intensities of preference between some pairs 

of reference actions on particular criteria, 

e.g. „x is preferred to y at least as much as w is preferred to z, on 

criterion giF” 
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 DM is supposed to provide the following preference information :  

 a partial preorder    on AR, such that x,yAR  

 x  y    „x is at least as good as y” 
 

 a partial preorder  * on ARAR, such that x,y,w,zAR  

(x,y) * (w,z)  „x is preferred to y at least as much as w is preferred to z”  

 

 a partial preorder  i* on ARAR, i=1,...,n, such that x,y,w,zAR  

(x,y) i* (w,z)  „x is preferred to y at least as much as w is preferred to z,  

on criterion giF”.    

GRIP – Generalized Regression with Intensities of Preference 
             (Figueira, Greco & Słowiński 2005, 2008) 
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 A utility function U is called compatible if it satisfes  

the constraints corresponding to DM’s preference information: 

a) U(x)  U(y)  iff  x  y 

b) U(x) > U(y)  iff  x  y 

c) U(x) = U(y)  iff  x  y 

d) U(x) – U(y)  U(w) – U(z)  iff  (x,y) * (w,z) 

e) U(x) – U(y) > U(w) – U(z)  iff  (x,y) * (w,z)  

f) U(x) – U(y) = U(w) – U(z)  iff  (x,y) * (w,z) 

g) ui(x)  ui(y)  iff  x i y,  iI 

h) ui(x) – ui(y)  ui(w) – ui(z)  iff  (x,y) i* (w,z),  iI 

i) ui(x) – ui(y) > ui(w) – ui(z)  iff  (x,y) i* (w,z),  iI  

j) ui(x) – ui(y) = ui(w) – ui(z)  iff  (x,y) i* (w,z),  iI 

 

GRIP – Generalized Regression with Intensities of Preference 
             (Figueira, Greco & Słowiński 2005, 2008) 
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 Moreover, the following normalization constraints should also be 

taken into account: 

k) ui(i)=0,  iN 

l)   

 

  1
Ii

iiu

GRIP – Generalized Regression with Intensities of Preference 
             (Figueira, Greco & Słowiński 2005, 2008) 
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 If constraints a) – l) are consistent, then we get two weak preference 

relations N and P 

 a necessary weak preference relation: for all x,yA,  

  x N y  U(x)  U(y) for all compatible value functions  

 a possible weak preference relation: for all x,yA,   

x P y  U(x)  U(y) for at least one compatible value function  

GRIP – Generalized Regression with Intensities of Preference 
             (Figueira, Greco & Słowiński 2005, 2008) 
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 If constraints a) – l) are consistent, then we get also two overall binary 

relations comparing intensity of preference *N and *P : 

 a necessary relation of preference intensity: for all x,y,w,z A, 

(x,y) *N (w,z)  [U(x) – U(y)]  [U(w) – U(z)]  for all compatible 

value functions 

 a possible relation of preference intensity: for all x,y,w,z A,  

(x,y) *P (w,z):  [U(x) – U(y)]  [U(w) – U(z)] for at least one 

compatible value function  

 

GRIP – Generalized Regression with Intensities of Preference 
             (Figueira, Greco & Słowiński 2005, 2008) 
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 If constraints a) – l) are consistent, then we get two binary relations 

comparing intensity of preference i*
N and i*

P for each criterion giF: 

 a necessary relation of preference intensity: for all x,y,w,z A, 

(x,y) i*
N (w,z)  [ui(gi(x)) – ui(gi(y))]  [ui(gi(w)) – ui(gi(z))]           

for all compatible value functions 

 a possible relation of preference intensity : for all x,y,w,z A,  

(x,y) i*
P (w,z): [ui(gi(x)) – ui(gi(y))]  [ui(gi(w)) – ui(gi(z))]          

for at least one compatible value function 

GRIP – Generalized Regression with Intensities of Preference 
             (Figueira, Greco & Słowiński 2005,2008) 
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 Some properties: 

 xNy    xPy,  

 (x,y)*N(w,z)   (x,y) *P (w,z), 

 (x,y)i*
N(w,z)   (x,y) i*

P (w,z), giF 

 N, *N  and i*
N, iN, are partial preorders  

 P, *P  and i*
P are strongly complete and negatively transitive, (in 

general, P P, *P  and i*
P are not transitive)  

GRIP – fundamental properties of  

                               N,  P,  *N,  *P, i*
N,  i*

P  
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GRIP – the linear programming problem:  
the result is independent of  

 Strict inequalities such as b), e), i) are rewritten as: 

 b’)  U(x)  U(y) +  

 e’)  U(x) – U(y)  U(w) – U(z) +  

 i’)  ui(x) – ui(y)  ui(w) – ui(z) +  

 xPy  the set of constraints is feasible and *>0, where 

*=Max , subject to constraints a)–l), with b),e),i) written as 

b’),e’),i’) and  U(x)  U(y) 

 xNy  the set of constraints is infeasible or *0, where 

*=Max , subject to constraints a)–l), with b),e),i) written as 

b’),e’),i’) and  U(y)  U(x) +   
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The “most representative” value function 
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 Recommendations taking into account the whole set of admissible  

value functions answer to robustness concerns, since they are in 

general “more robust” than a single ranking obtained by an arbitrarily 

chosen compatible value function.  

 However, in practice, for some decision-making situations, a score is 

needed to assign to the different actions and despite the interest of 

the two rankings provided, some users would like to see the “most 

representative” value function among all the compatible ones.  

 This value function should allow assigning a score to each action.  

 We propose a way to identify the “most representative” value function 

in GRIP, without loosing the advantage of taking into account all 

compatible value functions.  

The need for a representative value function 



60 

 The idea is to select among compatible value functions that value 

function which better highlights the necessary ranking, maximizing 

the difference of evaluations  between actions for which there is a 

preference in the necessary ranking.  

 As secondary objective, one can consider minimizing the difference of 

evaluations  between actions for which there is not a preference in 

the necessary ranking.  

 

The idea of the „most representative”  value function (Figueira, Greco, 
Slowinski 2008; see also Kadzinski, Greco, Slowinski 2010, 2011) 
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  1) Determine the necessary and the possible preferences in the 

considered set of actions.  

  2) For all pairs of actions (a,b), such that a is necessarily preferred to 

b (a N b but not b N a), add the following constraints to the linear 

programming constraints of GRIP: U(a)U(b)+. 

 3) Maximize   

 4) Add the constraint = *, with *=Max  of point 3), to the linear 

programming constraints of point 2)   

 5) For all pairs of actions (a,b),  such that neither a is necessarily 

preferred to b nor b is necessarily preferred to a (not a N b and      

not b N a), add the following constraints to the linear programming 

constraints of GRIP: U(a)U(b)  and  U(b)U(a).  

   6) Minimize  

 

Procedure to determine the “most 
representative”  value function 
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  1) Determine the necessary and the possible preferences in the 

considered set of actions.  

  2) For all pairs of actions (a,b), such that a is necessarily preferred to 

b (a N b but not b N a), add the following constraints to the linear 

programming constraints of GRIP: U(a)U(b)+. 

  3) For all pairs of actions (a,b),  such that neither a is necessarily 

preferred to b nor b is necessarily preferred to a (not a N b and      

not b N a), add the following constraints to the linear programming 

constraints of GRIP: U(a)U(b)  and  U(b)U(a).  

  4’)  Maximize the following objective function: M , where M is a 

“big value”.  

 

Alternative procedure to determine the “most 
representative”  value function 
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First illustrative example: 
ROR is easy! 
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Illustrative example 

 

Students Mathematics Physics Literature 

S1 Medium Medium Good 

S2 Good Good Medium 

S3 Medium Good Medium 

S4 Medium Medium Medium 

S5 Good Good Bad 

S6 Medium Bad Good 
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 Preferences between students 

 S2  S1 

 S4  S5 

 S5  S6  

 Overall intensity of preferences 

 (S5,S6) * (S2,S1)  

 Intensity of preference relative to single criteria 

 (Good,Medium)                  (Medium,Bad) 

 

Information on preferences given by the DM 


*

sMathematic
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Necessary weak preference *N from GRIP  

(Hasse Diagram) 

S2 

S1 S3 

S4 

S5 

S6 
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“The most representative value function” 

 =0.1, =0 

Mathematics Physics Literature 

Bad 0 0 0 

Medium 0 0.4 0.3 

Good 0.1 0.5 0.4 
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Evaluation of students by means of  
“the most representative value function” 

Students Mathematics Physics Literature Value 

S1 Medium (0) Medium (0.4) Good     (0.4) 0.8 

S2 Good     (0.1) Good     (0.5) Medium (0.3) 0.9 

S3 Medium (0) Good     (0.5) Medium (0.3) 0.8 

S4 Medium (0) Medium (0.4) Medium (0.3) 0.7 

S5 Good     (0.1) Good     (0.5) Bad       (0) 0.6 

S6 Medium (0) Bad       (0) Good     (0.4) 0.4 
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Value function given by UTAMP1 

 =0.167 

Mathematics Physics Literature 

Bad 0 0 0 

Medium 0 0.5 0.33 

Good 0.17 0.5 0.33 
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Evaluation of students by means of UTAMP1  

Students Mathematics Physics Literature Value 

S1 Medium (0) Medium (0.5) Good     (0.33) 0.83 

S2 Good     (0.17) Good     (0.5) Medium (0.33) 1 

S3 Medium (0) Good     (0.5) Medium (0.33) 0.83 

S4 Medium (0) Medium (0.5) Medium (0.33) 0.83 

S5 Good     (0.17) Good     (0.5) Bad       (0) 0.67 

S6 Medium (0) Bad       (0) Good     (0.33) 0.33 
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Comparison of  GRIP, “the most 
representative value function” and UTAMP1 

S2 

S1 S3 

S4 

S5 

S6 

GRIP 
Students “The most 

representative 

value function” 

UTAMP1 

S1 0.8 0.83 

S2 0.9 1 

S3 0.8 0.83 

S4 0.7 0.83 

S5 0.6 0.67 

S6 0.4 0.33 

UTAMP1 does not represent the necessary weak preference of 
S3 over S4 
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A didactic example:  
ROR is interactive! 
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UTAGMS : an illustrative example 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 

g1 2 1 3 0 1 3 0 4 3 3 3 3 3 1 1 4 1 3 3 3 

g2 0 3 1 2 1 3 0 4 0 4 1 2 3 0 3 1 2 1 2 2 

g3 0 0 1 1 4 2 3 1 3 3 3 3 3 1 1 4 1 3 3 3 

g4 5 5 4 4 4 3 3 2 2 3 1 1 1 3 1 1 2 4 0 1 

g5 3 2 3 2 2 3 3 0 3 0 4 2 1 3 4 2 3 2 3 1 

Evaluation matrix 

Ranking problem: 20 actions evaluated on 5 criteria 

Empty dominance relation ! 
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UTAGMS : an illustrative example 

 
First iteration 
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UTAGMS : an illustrative example 

Second iteration 
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UTAGMS : an illustrative example 

Third iteration 
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GRIP : an illustrative example 

Fourth iteration, after addition of intensity condition: (s8,s10)(s1,s2) 
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UTA-DISGMS for multicriteria sorting problems 

 Actions from set A are to be assigned to pre-defined and 

preference-ordered classes 

 Classes have a semantic definition 

 Assignment to classes is grounded on absolute evaluation 

of actions on multiple criteria 

 No relative comparison is required because sorting is 

„context-free”, which is not the case of choice and ranking 
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UTA-DISGMS – given data 

 A={a1, a2, ..., ai, ..., am}  actions to be assigned to classes,  

 g1, g2, ..., gn, n criteria, gj: A  R for gj  F, 

 C1, C2, ..., Cp, p ordered classes,  Ch+1 >> Ch, H={1,...,p}, 

 Xj={xj R : gj(ai)=xj, ai  A } - the set of all different 

           evaluations on gj, gj  F, 

 xj
0, xj

1, ..., xj
mj – the ordered values of Xj, (xj

k, xj
k+1). 
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UTA-DISGMS – preference information 

 A* A - a set of reference actions, 

 The DM defines a (possibly imprecise) desired assignment: 

 a  [Cmin(a), Cmax(a)],  a  A*, where [Cmin(a),Cmax(a)] is a 

set of contiguous classes Cmin(a), Cmin(a)+1, ..., Cmax(a) 
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UTA-DISGMS – preference model 
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UTA-DISGMS 
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UTA-DISGMS 
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UTA-DISGMS 
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UTA-DISGMS 
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UTA-DISGMS 
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UTA-DISGMS 

U 
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UTA-DISGMS 

U 
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UTA-DISGMS 

U 
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UTA-DISGMS 

U 
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UTA-DISGMS – posible and necessary assignments  

Application of a set  of compatible value functions U 
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UTA-DISGMS – posible and necessary assignments  
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UTA-DISGMS – posible assignments  

 Computing possible assignments 
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UTA-DISGMS – posible assignments  
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UTA-DISGMS – necessary assignments  

 Computing necessary assignments 
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UTA-DISGMS – incremental definition of set A* with decrasing confidence 
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Group multicriteria ranking problem statement 

 Several DMs cooperate in a decision problem to construct a 

collective ranking 

 

 DMs share the same „description” of the decision problem  

(set of actions, evaluation criteria, evaluation matrix) 

 

 Each DM provides his/her own preference information 

 

 The collective ranking should account for the preference 

expressed by each DM 
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Ordinal regression for group ranking: UTA-GROUPGMS 

 Set of DMs: D=d1,...,dp 

 

 Preference information provided by DM dh, h=1,...,p:       

BR(dh) a partial preorder on a set of reference actions 
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 We consider the set of value functions for each dhD*D stemming 

from UTAGMS  

 For each D* D, 4 situations are interresting for (x,y)A: 

 

 x N,N(D*) y: x N y for all dhD*, 

 

 x N,P(D*) y: x N y for at least one dhD*,  

 

 x P,N(D*) y: x Py for all dhD*, 

 

 x P,P(D*) y: x Py for at least one dhD* 

Ordinal regression for group ranking: UTA-GROUPGMS 
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Ordinal regression for group ranking: UTA-GROUPGMS 

 Properties 

 N,N(D*) is a partial preorder 

 N,P(D*) is not necessarily transitive 

 P,P(D*) is strongly complete 

 x N,N(D*) y  x N,P(D*) y 

 x N,P(D*) y  x P,P(D*) y 

When D*  D**, it holds 

 x N,N(D**) y    x N,N(D*) y 

 x N,P(D**) y    x N,P(D*) y 

 x P,N(D**) y    x P,N(D*) y 

 x P,P(D**) y    x P,P(D*) y 
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Ordinal regression for group ranking: UTA-GROUPGMS 

 Given a set of DMs D* D,  a value function U is compatible if it 

satisfies the following set of constraints: 

 

 

 

 

 

 

 

 

 

 

 Suppose that set UD* of compatible value functions is not empty  

(DMs statements are not contradictory)... 
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Ordinal regression for group ranking: UTA-GROUPGMS 

 One obtains two rankings such that for any pair of actions (x,y)A: 

 x N(D*) y: x is ranked at least as good as y  iff  UD*(x)UD*(y)    

for all value functions compatible with the preference information 

(necessary weak preference relation N being a partial preorder) 

 x P(D*) y: x is ranked at least as good as y  iff  UD*(x)UD*(y)     

for at least one value function compatible with the preference 

information  (possible weak preference relation P being a strongly 

complete and negatively transitive binary relation) 

 

 However, the set UD* of compatible value function can be empty... 
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Ordinal regression for group ranking: UTA-GROUPGMS 

Suppose UD*= 

 UD* corresponds to the intersection of sets of compatible value 

functions for all dhD* (each one being non-empty) 

 This means that pairwise comparisons of two (or more) DMs are 

contradictory 

 Identifying which are these contradictory comparisons amounts  

at solving inconsistency 

 This leads to know which comparisons to remove in order to obtain  

a consistent collective model 

 Performing these computations D*D allows to indentify coalitions 

of convergent DMs, for which a necessary and possible consensus 

rankings exist 
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Ordinal regression for group ranking: UTA-GROUPGMS 

 Reasoning in terms of pairwise comparisons decomposes elicitation  

of preference information into small natural pieces 

 UTA-GROUPGMS avoids discussions of DMs on technical parameters 

(tradeoffs, weights, …) 

 Taking into account all compatible value functions permits to reason 

in terms of necessary and possible rankings and coalitions 
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UTA-GROUPGMS : an illustrative example  

Evaluation matrix 

Ranking problem: 3 DMs (d1, d2 and d3), 20 actions evaluated on 5 criteria 

Empty dominance relation ! 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 

g1 2 1 3 0 1 3 0 4 3 3 3 3 3 1 1 4 1 3 3 3 

g2 0 3 1 2 1 3 0 4 0 4 1 2 3 0 3 1 2 1 2 2 

g3 0 0 1 1 4 2 3 1 3 3 3 3 3 1 1 4 1 3 3 3 

g4 5 5 4 4 4 3 3 2 2 3 1 1 1 3 1 1 2 4 0 1 

g5 3 2 3 2 2 3 3 0 3 0 4 2 1 3 4 2 3 2 3 1 
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UTA-GROUPGMS : an illustrative example 

 Statements of DMs: 

 d1: s1s2,  s6 s7,  s17 s20 

 d2: s9 s13,  s4 s5,  s14 s7 

 d3: s4 s3,  s15 s11,  s8 s10 

 

  U{d1,d3}=U{d1,d2,d3}=, i.e., statements of d1 and d3 are contradictory:  

 d1: s1 s2  s3 s4 

 d3: s4 s3  s2 s1 

 

 If (d1 removes s1 s2) or (d3 removes s4 s3), then U{d1,d2,d3}  
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UTA-GROUPGMS : an illustrative example 

 Although U{d1,d2,d3}= , the following relations are not empty: 

 N,N({d1,d2,d3}) = {(s6,s7)}, i.e., s6
Ns7 for all dh 

 N,N({d1,d2}) = {(s6,s7), (s9,s13)} 

 N,N({d1,d3}) = {(s6,s7), (s17,s20)} 

 N,N({d2,d3}) = {(s6,s7), (s15,s11)} 

 
 

 xN,P({d1,d2,d3}) y:  xNy for at least one dh 

 

 

 xP,N({d1,d2,d3}) y:  xPy for all dh 

 

 

 xP,P({d1,d2,d3}) y:  xPy for at least one dh 

 



109 

UTA-GROUPGMS : an illustrative example 

 Suppose d3 removes s4 s3 then the collective model leads to the 

following collective necessary ranking:   
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Multicriteria group sorting with a set of additive value functions: 
UTA-DIS-GROUPGMS 

 Set of DMs: D=d1,...,dp 

 Preference information provided by DM dh, h=1,...,p:  

a*h[                          ]  

 for all reference actions a* AR 

 Given a set of DMs  D’ D,  
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Multicriteria group sorting with a set of additive value functions: 
UTA-DIS-GROUPGMS (necessary and possible assignment) 

     

 

 means that all DMs in D’ agree that action a can be assigned to 

one class from the interval 

 

 

 means that that there is at least one DM in D’ who believes that 

action a can be assigned to one class in the interval 
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Robust Ordinal Regression approach for outranking methods 

 Preference information provided by DM: 

aSb  or  aScb,  for  a,bAR  

 Concordance function, for a,bA: 

 C(a,b)=[w1c'1(a,b)+…+wnc'n(a,b)]/(w1+…+wn) 

 since (w1+…+wn)=1, we can consider C(a,b)=c1(a,b)+…+cn(a,b), 

where ci(a,b)=wic'i(a,b), i=1,…,n 

 ci(a,b) is a monotone, non-decreasing function w.r.t. gi(a)–gi(b), 

such that ci(a,b)0 for all a,bA (alt. for gi(a)–gi(b)qi0), i=1,…,n, 

and 

c1(a,b)+…+cn(a,b)=1 in case gi(a)–gi(b)=ii for all i=1,…,n 
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Robust Ordinal Regression approach for outranking methods 

 Ordinal regression constraints, for a,bAR : 

 c1(a,b)+…+cn(a,b)    and  gi(b)–gi(a)  vi, i=1,…,n,  if  aSb 

 c1(a,b)+…+cn(a,b)  ++M0(a,b)  and  gi(b)–gi(a)  vi+Mi(a,b), 

Mi(a,b){0,1}, i=1,…,n, M0(a,b)+M1(a,b) …+Mn(a,b)  n,  if   aScb 

   0.5, vi  0 (alt. vipiqi0), i=1,…,n, 

 ci(a,b)0  for all  a,b AR  and  i=1,…,n,  

c1(a,b)+…+cn(a,b)=1  for  gi(a)–gi(b)=ii,  i=1,…,n  

 ci(a,b)  ci(c,d)  if gi(a)–gi(b)  gi(c)–gi(d), for all a,b,c,dAR, i=1,…,n 

 where  is a small positive value and  is a big positive value 

(if specified, preference and indifference thresholds pi,qi are given) 

  

E
(
A

R
)
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Robust Ordinal Regression approach for outranking methods 

 Given a pair of actions x,yA, x necessarily outranks y: 

xSNy    d(x,y)  0 

 d(x,y) = Min{c1(x,y)+…+cn(x,y)  },  s.t. E(AR),  where 

 ci(a,b)  ci(c,d)  if  gi(a)–gi(b)  gi(c)–gi(d),  for all a,b,c,dAR{x,y}, 

i=1,…,n, and 

 gi(y)–gi(x)  vi, i=1,…,n 

 d(x,y)  0  means that for all compatible outranking models  

x outranks y 

 For x,yAR : 

          xSy  xSNy 
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Robust Ordinal Regression approach for outranking methods 

 Given a pair of actions x,yA, x possibly outranks y: 

xSPy    D(x,y)  0 

 D(x,y) = Max{c1(x,y)+…+cn(x,y)  },  s.t. E(AR),  where 

 ci(a,b)  ci(c,d)  if  gi(a)–gi(b)  gi(c)–gi(d),  for all a,b,c,dAR{x,y}, 

i=1,…,n, and 

 gi(y)–gi(x)  vi, i=1,…,n 

 D(x,y)  0  means that for at least one compatible outranking model  

x outranks y 

 For x,yAR : 

          xSy  not ySPx  
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Robust Ordinal Regression approach for outranking methods 

 For any pair of actions x,yA : 

xSNy   not xSCPy  

xSPy   not xSCNy  

 so, only xSNy and xSPy are to be checked 
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 Generalization for group decision  

is analogical to UTA-GROUPGMS and UTA-DIS-GROUPGMS 

 For each DM dhD’D we consider all compatible outranking 

models 

 Four situations are interesting for x,yA : 

 x SN,N(D’) y: x SN y for all dhD’ 

 x SN,P(D’) y: x SN y for at least one dhD’ 

 x SP,N(D’) y: x SP y for all dhD’ 

 x SP,P(D’) y: x SP y for at least one dhD’ 

 

Robust Ordinal Regression approach for outranking methods:  
the case of group decision 
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ROR and Interaction among criteria 
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Basic concepts 
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Setting 

 N={1,2,…,n} set of criteria 

 Xi : set of possible values of the i-th criterion 

 X=        = X1  X2 … Xn={(x1,…, xn):x1X1,…, xnXn}: set of 

all conceivable alternatives  

 X include the alternatives under study. . . and many others! 

 In this case we suppose that X1 = X2 =… =Xn =XR+ such that  

X=Xn 

 : weak preference realtion on X such that for all x,yX 

x  y  

means  

 «x is at least as good as y» 

X i

n

i 1

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Marginal preferences 

 i: weak marginal preference relation on Xi, iN, such that for 

all xi,yiXi 

xi i yi means  «xi is at least as good as yi» 

 We suppose also that  

xi  yi  xi  yi 

 °: weak marginal preference relation on         , such that for 

all xiXi,yjXj, i,jN 

xi 
° yj means «xi is at least as good as yi» 

 We suppose also that  

xi  yj  xi 
° yj 

 


n

i

iX
1
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Weighted sum model 

 For all all x,yX 

x  y   

with wi non negative for all i  N. 

 

 In this case wi can be interpreted as the  importance of criterion iN. 

 The importance of couple of criteria {i,j}N is given by wi + wj.  

 The importance of set of criteria AN, denoted by (A), is given by  

 

 

 Observe that for A,BN such that AB= 
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Introductory example 
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Illustrative example (Grabisch 1996) 

 

 

 

 

 

 

 

 

 

 

Students Mathematics Physics Literature 

S1 18 16 10 

S2 10 12 18 

S3 14 15 15 
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Illustrative example (Grabisch 1996) 

 

 

 

 

 

 

 

 

 

Suppose that  the  school  is  more scientifically than  literary  

oriented,  so  that  weights  could  be  for  example 3,  3  and  2  

respectively. 

Students Mathematics Physics Literature Global 

evaluation 

(weighted sum) 

S1 18 16 10 15.25 

S2 10 12 18 17.25 

S3 14 15 15 14.62 
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Illustrative example (Grabisch 1996) 

“If the  school wants  to  favor well equilibrated students without  

weak  points,  the  above  ranking  is  not  fully satisfactory,  

since  student  S1  has  a  severe  weakness in  literature,  but  has  

been  considered  better than  student S3,  who has  no weak point. 

The reason  is  that  too much importance is given to  

mathematics and physics, which are in  a  sense redundant 

since,  usually, students good  at  mathematics  are  also  good  at  

physics  (and vice  versa),  so  that  the  evaluation  is  

overestimated (resp.  underestimated)  for  students  good  (resp.  

bad) at mathematics and/or physics.” 

 

How to solve the problem? 
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Representing importance of criteria by means of a fuzzy 
measure (or capacity) 

 

 

 

 

 

For any AN, (A) represent the importance of the set of 

criteria A. 

 

It is no more true that for any A,BN such that AB= we 

have  

 (AB)=(A)+(B) 
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Representing importance of criteria by means of a fuzzy 
measure in the illustrative example (Grabisch 1996) 

 

 

 

 

 

Set of subjects A (A) 

 0 

{Mathematics} 0.45 

{Physics} 0.45 

{Literature} 0.3 

{Mathematics, Physics} 0. 5 

{Mathematics, Literature} 0. 9 

{Physics, Literature} 0. 9 

{Mathematics, Physics,Literature} 1 
 
({Mathematics,Physics}) ({Mathematics})+ ({ Physics})  

(redundancy between Mathematics and Physics) 
 
({Mathematics,Literature}) ({Mathematics})+ ({ Literature})  

(synergy between Mathematics and Literature) 
({Physics,Literature}) ({Physics})+ ({ Literature}) 

(synergy between Physiccs and Literature) 
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The Choquet integral (1952): computing a “weighted sum” 
using the non additive weights given by the fuzzy measure 

 

 

 

 

 

 

Observe that the Choquet integral can be written also as follows: 
 
      dtxxNjC

i
Ni

x

ij




max

0

: x
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Illustrative example (Grabisch 1996): computing the Choquet 
integral for students S1 

 

 

 

 

xLit  xPhys xMath 

A1={Mathematics,Physics,Literature} 

A2={Mathematics,Physics} 

A3={Mathematics} 

C(18,16,10)=(10-0)(A1)+(16-10)(A2)+(18-16)(A2)= 

(10-0)1+(16-10)0.5+(18-16)0.45=13.9 

Students Mathematics Physics Literature 

S1 18 16 10 
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Illustrative example (Grabisch 1996): computing the Choquet 
integral for students S2 

 

 

 

 

xMath  xPhys xLit 

A1={Mathematics,Physics,Literature} 

A2={Physics,Literature} 

A3={Literature} 

C(10,12,18)=(10-0)(A1)+(12-10)(A2)+(18-12)(A2)= 

(10-0)1+(12-10)0.9+(18-12)0.3=13.6 

Students Mathematics Physics Literature 

S2 10 12 18 
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Illustrative example (Grabisch 1996): computing the Choquet 
integral for students S3 

 

 

 

 

xMath  xPhys xLit 

A1={Mathematics,Physics,Literature} 

A2={Physics,Literature} 

A3={Physics} 

C(18,16,10)=(14-0)(A1)+(15-14)(A2)+(15-15)(A2)= 

(14-0)1+(15-14)0.9+(15-15)0.45=14.9 

Students Mathematics Physics Literature 

S3 14 15 15 
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Illustrative example (Grabisch 1996) 

 

 

 

 

 

 

 

 

 

 

Choquet integral ranks student  S1, that has  a  severe  weakness in  

literature, worse than student S3,  that has  no weak point. 

Students Mathematics Physics Literature Global 

evaluation 

(Choquet 

integral) 

S1 18 16 10 13.9 

S2 10 12 18 13.6 

S3 14 15 15 14.9 
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Specific cases of Choquet integral  

 

 C(x1,…,xn)= Max(x1,…,xn) if (A)=1 for all AN (and, of 

course, ()=0) 

 C(x1,…,xn)= min(x1,…,xn) if (A)=0 for all AN (and, of 

course, (N)=1) 

 C(x1,…,xn)= OWA(w1,…,wn;x1,…,xn) if (A)=(B) when |A|=|B|,  

for all A,B  N with 

OWA(w1,…,wn;x1,…,xn)=w1x(1)+…+wnx(n)  (Yager 1988) 

 and wi= (A)-(B) with A,B  N  such that |A|=i and |B|=i-1;   

 C(x1,…,xn)= w(k) (k-th order statistic, 0<kn) if (A)=0 for |A|<k 

and (A)=1 for |A|k for all AN.  

 

 

 

 

 

 

 

 

xMath  xPhys xLit 

A1={Mathematics,Physics,Literature} 

A2={Physics,Literature} 

A3={Physics} 

C(18,16,10)=(14-0)(A1)+(15-14)(A2)+(15-15)(A2)= 

(14-0)1+(15-14)0.9+(15-15)0.45=14.9 
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The Möbius transformation of a fuzzy measure (or capacity) 
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The Shapley value 

 The  global  importance  of a  criterion iN  is  not solely 

determined  by  the  value  ({i}),  but  also by  all  (A) 

with AN  such  that iA.   

 But  how  to  extract from these  values the  contribution of 

i  alone? 

 By the Shapley value 

 

 

 

 

 
    }{

!

)!(!1

)(

:

:

iAA
n

AnA

A

Aa
i

AiNA

AiNA




















137 

The interaction index 

 The  interaction  between  i and  j  is  not  only  determined  

by  the  difference ({i,  j})  - ({i}) - ({j}) but  also  by  

all the coefficients (A)  such that {i, j}  A. Then,  

    how  to  compute  a  degree  of  interaction  which  is  

    meaningful? 

 By the interaction index (Murofushi 1993) 
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2-additive fuzzy measures 
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Shapley value and interaction indices in case of  
2-additive fuzzy measures 
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Non Additive Robust Ordinal Regression 
(Angilella, Greco, Matarazzo 2010) 
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The Decision Maker’s preference information 

 

 

 

 

 



142 

The Decision Maker’s preference information 
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The Decision Maker’s preference information 
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The Decision Maker’s preference information 
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The Decision Maker’s preference information 
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NAROR methodology 
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A recruitement problem 
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The Decision Maker’s preference information 
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Necessary and possible preference relations 
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ROR and the enriched additive value functions: 
the UTAGMS-INT method 
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Plan 

 Interaction among criteria explained on an example 

 Incapacity of additive value function and Choquet integral 

 Robust Ordinal Regression dealing with interactions – UTAGMS-INT 

 Input preference information 

 Discovering the need of handling interactions 

 Identifying the pairs of interacting criteria 

 Calculating the necessary and possible preference relations 

 Didactic example 

 Interaction on bipolar scales - UTAGSS 

 Conclusions 
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Interaction among criteria explained on an example 
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 Positive interactions (e.g., maximum speed & price of a car): 

 

 

 Negative interactions (e.g., maximum speed & acceleration of a car): 

 

 

Interactions between two criteria 

     
22112121

 iiiiiii,i xuxux,xu 

     
22112121

 iiiiiii,i xuxux,xu 
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Illustrative example 

 

 

 

 

 

 

 

 

 

What preference model would be able to represent the preference: 

S2  S1  and  S3  S4 

? 

Students Mathematics Physics Literature 

S1 Good Medium Bad 

S2 Good Bad Medium 

S3 Medium Medium Bad 

S4 Medium Bad Medium 
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Additive value function 

 Consider an additive value function 

 

 

 Does there exist an additive value function representing  

the preferences  S2  S1  and  S3  S4 ? 

    



n

i
ii xguxU

1
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S2  S1 

U(S2)=UMath(GOOD)+ UPhys(BAD)+ULit(MEDIUM) 

 > 

UMath(GOOD)+UPhys(MEDIUM)+ULit(BAD)=U(S1) 

 

S3  S4 

U(S3)=UMath(MEDIUM)+UPhys(MEDIUM)+ULit(BAD)  

 > 

UMath(MEDIUM)+UPhys(BAD)+ULit(MEDIUM)=U(S4) 

 

Additive value function 



S2  S1 

U(S2)=UMath(GOOD)+ UPhys(BAD)+ULit(MEDIUM) 

 > 

UMath(GOOD)+UPhys(MEDIUM)+ULit(BAD)=U(S1) 

 

S3  S4 

U(S3)=UMath(MEDIUM)+UPhys(MEDIUM)+ULit(BAD)  

 > 

UMath(MEDIUM)+UPhys(BAD)+ULit(MEDIUM)=U(S4) 

contradiction ! 
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Additive value function 
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Additive value function: violation of preferential independence 

 

 

 

 

 

 

 

 

 

 

S2  S1  and  S3  S4 

Students Mathematics Physics Literature 

S1 Good Medium Bad 

S2 Good Bad Medium 

S3 Medium Medium Bad 

S4 Medium Bad Medium 
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 Numerical encoding on a unique scale of the evaluations on each 

criterion: 

Students Mathematics Physics Literature 

S1 Good Medium Bad 

S2 Good Bad Medium 

S3 Medium Medium Bad 

S4 Medium Bad Medium 

Students Mathematics Physics Literature 

S1 1 0.5 0 

S2 1 0 0.5 

S3 0.5 0.5 0 

S4 0.5 0 0.5 

Choquet integral 
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 Definition 

 

 

 where u(g(i)) is encoding g(i) on a common numerical scale, 

(·) stands for the permutation of the indices of criteria: 

g(n)(a) I g(n-1)(a) I . . . I g(1)(a)  

 (Ri) is called capacity of Ri, i.e. weight for subset of criteria Ri 

 Ri = {(i),...,(n)},  i=1,…,n,  u(g(0)) = 0 

Choquet integral 

            i
n

i
ii RaguaguaC μ
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
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 The Choquet integral is not able to represent the dean’s preferences 

S2  S3  and  S3  S4  for any order-preserving numerical encoding  

u of the evaluations and for any values of capacity μ 

 S2 ≻ S1  means  Cμ(S2) > Cμ(S1), which implies 

   [u(Good)−u(Medium)]×μ({Math}) + [u(Medium)−u(Bad)]×μ({Math,Lit}) 

> 

[u(Good)−u(Medium)]×μ({Math}) + [u(Medium)−u(Bad)]×μ({Math,Phys}) 

 S3 ≻ S4  means  Cμ(S3) > Cμ(S4), which implies 

[u(Medium)−u(Bad)]×μ({Math,Phys}) > [u(Medium)−u(Bad)]×μ({Math,Lit})  

 

contradiction !  

Choquet integral 
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 Bipolar Choquet integral could handle this interaction but it is yet less 

intuitive 

 Problems with respect to numerical encoding. How to transform 

performances on criteria into numerical values of a common scale? 

Questions, like: „is maximum speed of 180km/h worth a fuel 

consumption of 12 l/100km”?  

 Problems with respect to non-additive weights (capacity). How to 

translate the possible interaction among criteria into the capacities?  

Is there an intelligible relation between the preference information 

provided by the DM and the obtained value of the capacity?  

(see Mayag, Grabisch, Labreuche, 2008; Gonzales, Perny, 2005) 

 Problems with respect to interpretation of the Choquet integral. Is it 

possible to clearly justify preference of alternative a over alternative b 

in terms of values of the integral’s components? 

(see Roy, 2009)  

Choquet integral 
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We propose to enrich the additive value function... 

 We consider a value function of the type 

 

 

 

 

    „bonus”       „malus” 

 Syn+ is the set of pairs of criteria in a positive interaction 

 Syn is the set of pairs of criteria in a negative interaction 

 Syn+  Syn =  

                                  are non-decreasing functions  

in the two arguments 
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Illustrative example: value function Uint 

 

 

 

 

 

 

 

 

 

Preferences of the dean:  S2  S1  and  S3  S4 

violate the principle of preferential independence 

 

Students Mathematics Physics Literature 

S1 Good Medium Bad 

S2 Good Bad Medium 

S3 Medium Medium Bad 

S4 Medium Bad Medium 
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Illustrative example: value function Uint 

 

 

 

 

 

 

 

 

 

 

Non-interacting part of Uint 

Mathematics Physics Literature 

Good 0.03 0.62 0.32 

Medium 0.02 0.28 0.26 

Bad 0 0.01 0 
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Assuming Mathematics & Literature in positive interaction 

 

 

 

 

 

 

 

 

 

 

 

 

Good,Good 

0.03 

Good,Medium 

0.03 

Medium,Medium 

0 

Good,Bad 

0 

Medium,Bad 

0 

„Bonus” component of Uint 

  ,syn lit,math
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Illustrative example 

 

 

 

 

 

 

 

 

 

 

 

 

S2  S1  and  S3  S4 

(0.32 > 0.31  and  0.30 > 0.28) 

Students math phys lit 
Total 

score 

S1 
Good 

0.03 

Medium 

0.28 

Bad 

0 

Good,Bad 

0 

0.31 

S2 
Good 

0.03 

Bad 

0 

Medium 

0.26 

Good,Medium 

0.03 

0.32 

S3 
Medium 

0.02 

Medium 

0.28 

Bad 

0 

Medium,Bad 

0 

0.30 

S4 
Medium 

0.02 

Bad 

0 

Medium 

0.26 

Medium,Medium 

0 

0.28 

  ,syn lit,math
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Advantages of the new value function when used within ROR 

 With respect to numerical encoding: we do not need an a priori 

expression of all the evaluations on a common numerical scale; 

 i.e. the marginal value functions are not supposed to be known  

 

 Problems with  respect to non-addtive weights (capacity): we do not 

need non-additive weights; the value function is computed using ROR  

and even does not need to be shown to the Decision Maker 

 

 Problems with interpretation of the interaction components:  

interpretation of „bonus” and „malus” with respect to the sum  

of marginal values is cognitively simple 
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 Positive interactions (e.g., maximum speed & price of a car): 

 

 

 Negative interactions (e.g., maximum speed & acceleration of a car): 

 

 

 I (2) ={{i1, i2}: i1,i2I},  xi1Xi1, xi2Xi2 

 Syn+I(2) , set of pairs of criteria for which there is a positive synergy 

 SynI(2), set of pairs of criteria for which there is a negative synergy 

 Synergy strength is measured by  

functions 

not decreasing in both arguments, called „bonus” and „malus” 

Interactions between two criteria 

     
22112121

 iiiiiii,i xuxux,xu 
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 Positive interactions (e.g., maximum speed & price of a car): 

 

 

 Negative interactions (e.g., maximum speed & acceleration of a car): 

 

 

 I (2) ={{i1, i2}: i1,i2I},  xi1Xi1, xi2Xi2 

 Syn+I2 , set of pairs of criteria for which there is a positive synergy 

 SynI2, set of pairs of criteria for which there is a negative synergy 

 Synergy strength is measured by  

functions 

not decreasing in both arguments, called „bonus” and „malus” 

Interactions between two criteria 

       
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UTAGMS–INT  

 We consider a value function of the type 

 

 

 

 

    „bonus”       „malus” 

 Preference information elicited by the DM is the same as 

in the GRIP method: 

 pairwise comparisons of some reference alternatives  

a’,b’A’  (partial preorder    on A’ – set of reference alternatives) 

 ordinal intensity of preference for quadruples of reference 

alternatives a’,b’,c’,d’ A’, comprehensively or on specific criteria 

(partial preorder  * or i* on A’A’) 
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Three options to consider interaction  

 Considering a value function of the type 

 

 

 

 

    „bonus”       „malus” 

 α) bonus and malus are not mutually exclusive, so that positive 

and negative synergies interplay, 

 β) bonus and malus are mutually exclusive, 

 γ ) only one of the two synergies is considered, either the 

positive, or the negative 
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Compatible value functions 

 

 

preference statements of the DM 

monotonicity of the non-interacting part of Uint 

normalization and non-negativity  of Uint 

monotonicity of Uint 
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Compatible value functions (cont.) 

 

 

monotonicity of the bonus and malus functions 

i1>i2, a’,b’A’, if gi1(a’)>gi1(b’), gi2(a’)>gi2(b’)  
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Eliciting a minimal set of pairs of interacting criteria 

 Let us introduce two binary variables: 

 

 

 

 

 Any pair of criteria can be either in positive or in negative interaction: 
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Eliciting a minimal set of pairs of interacting criteria 

 In order to find a minimal set of pairs of criteria with either positive  

or negative interactions, one has to solve the following program (P) 

 

 

 

 

 

 

 

 

 (P) yields a value function Uint involving a minimal set of pairs  

of interacting criteria 
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Eliciting a minimal set of pairs of interacting criteria 
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Computing necessary and possible preference relations 

 To confirm relation a N b it is enough to check if *≤0 or the set of 

constraints is infeasible, where *:  

can b be preferred to a for some compatible Uint ? 

monotonicity of of Uint, of the non-interacting part of Uint 

and non-negativity of Uint for A’ augmented by {a,b} 
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Computing necessary and possible preference relations (cont.) 

 

 

monotonicity of the interacting part of Uint 

for A’ augmented by {a,b} 

(i1,i2) Syn, a’,b’A’{a,b},  
if gi1(a’)>gi1(b’), gi2(a’)>gi2(b’)  
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Computing necessary and possible preference relations 

 To confirm relation a P b one has to check if the set of constraints is 

feasible and *>0 in the previous problem, where constraint (48) is 

replaced by  Uint(a)>Uint(b)+  

 Using N and P one can compute:  

 necessary ranking (partial preorder in A) 

 possible ranking (strongly complete and negatively transitive 

relation in A) 

 If a score is needed to assign to the different alternatives, one can 

calculate a „representative” value function among all the compatible 

ones. 
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Example of application of UTAGMS-INT  
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Illustrative example 

 Performance matrix 

 

Students Mathematics 

(math) 

Physics 

(phys) 

Literature 

(lit) 

S1 Good Medium Bad 

S2 Good Bad Medium 

S3 Medium Medium Bad 

S4 Medium Bad Medium 

S5 Medium Medium Medium 

S6 Medium Good Medium 

S7 Good Good Bad 
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 Pairwise comarisons of (reference) students 

 S2  S1 

 S3  S4 

 S5  S1 

 Overall intensity of preferences 

 (S3,S4) * (S2,S1)  

 Intensity of preference relative to single criteria 

 (Medium, Bad)       (Good, Medium),   i=math, lit  

 (Good, Medium)       (Medium, Bad),   i=phys 

 

 A′ = {S1, S2, S3, S4, S5} 

 

Preference information elicited by the DM 



i


i
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 Dominance relation and pairwise comparisons of reference students  

Preference information given by the DM 
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Decision aiding procedure 

 First, we solve program (P), and obtain at the optimum  

+
i1,i2= i1,i2=0,  for all (i1,i2)II,  except  math,lit=1 

 This means there exists Uint compatible with the dean’s preferences, 

involving a negative interaction between Mathematics and Literature 

 Suppose that the dean is not willing to consider a negative interaction 

between these two criteria  math,lit=0  enters  (P)  (P’) 

 Solving (P’), we get  

 +
i1,i2= i1,i2=0,  for all (i1,i2)II,  except  math,phys=1 

 Suppose that the dean is not willing to consider a negative interaction 

between these two criteria  math,phys=0  enters  (P’)  (P’’) 

 Solving (P’’), we get  

 +
i1,i2= i1,i2=0,  for all (i1,i2)II,  except  +

math,lit=1 

 Suppose the dean accepts to consider this pos. interaction (math, lit) 
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Necessary preference relation N 
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 Using this information, 

the dean is able to  

identify the best student, 

even if the value function 

Uint is not unique 

Necessary preference relation N  graphical representation  
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 In order to give a score to each student, we compute a representative 

value function 

 Non-interacting part of the representative Uint 

Representative value function Uint 
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 „Bonus” component  syn+
math,lit  of the representative Uint 

Representative value function Uint 
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 „Bonus” component  syn+
math,lit  of the representative Uint 

and scores of students 
 

 

 

 

 

 

 

 

 

 

 

 

 S6 ≻ S7 ≻ S5 ≻ S2 ≻ S1 ≻ S3 ≻ S4  

Representative value function Uint – scores and ranking 
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SMAA and Robust Ordinal Regression 
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SMAA-Choquet 
(Angilella, Corrente, Greco 2012, 2014) 
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Subjective Stochastic Ordinal Regression 
(Corrente, Greco, Kadzinski and Slowinski 2015) 
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Illustrative example 
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Multiple Criteria Hierarchy Process 
(Corrente, Greco, Slowinski 2012, 2013) 
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Hierarchical decomposition of complex decision problems 

 „Almost everyone who has seriously thought about the objectives in 

a complex problem has come up with some sort of hierarchy of 

objectives.” 

(R.L. Keeney & H. Raiffa, 1976, p. 41) 

 „A hierarchy is an abstraction of the structure of a system to study 

the functional interactions of its components and their impacts on the 

entire system.” 

(T.L. Saaty, 1980, p.5)  

 „In the process of structuring the problem, it is possible (even likely) 

that the criteria may have been constructed hierarchically in terms of 

a value tree.” 

(V. Belton & T.J. Stewart, 2002, p. 80) 
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Tree structure of objectives-criteria – an example 

Quality of life 

Social benefits 

Economic benefits 

Environmental benefits 

Household income 

# Jobs 

Water supply 

Agricultural output 

Forestry output 

Secondary industry 

Area conserved 

# Ecotypes conserved 

River status 

Dissolved solids 

Dry season flow 

Flood level 

Land use problem 

(V. Belton & T.J. Stewart, 2002, p. 81) 
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Multiple Criteria Hierarchy Process (MCHP) 

S. Corrente, S. Greco, R. Słowiński: Multiple Criteria Hierarchy Process in Robust  
      Ordinal Regression. Decision Support Systems, 53 (2012) no.3, 660-674 

1st level criteria 

2nd level criteria 

elementary criteria 

alternatives 

root criterion 

a c b e d h g f 

G(1) G(2) 

G(1,1) G(1,2) G(1,3) G(2,1) G(2,2) 

g(1,1,1) 

g(1,1,2) 

g(1,2,1) g(1,3,1) 

g(1,2,2) 

g(1,2,3) 

g(1,3,2) 

g(2,1,1) g(2,2,1) 

g(2,1,2) g(2,2,2) 

g(2,1,3) 

G(0) 
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Multiple Criteria Hierarchy Process (MCHP) - notation 

Level criterion Gr 

G(1),G(2)  {Gr, r=(1),…(m)} 

G(1,1),G(1,2),…,G(2,2)  

{G(r,j), j=1,…,n(r)} 

Elementary criterion gt 

EL–set of elementary criteria 

EL={g(1,1,1), g(1,1,2),…,g(2,2,2)} 

alternatives 

G(0) – root criterion 

a c b e d h g f 

G(1) G(2) 

G(1,1) G(1,2) G(1,3) G(2,1) G(2,2) 

g(1,1,1) 

g(1,1,2) 

g(1,2,1) g(1,3,1) 

g(1,2,2) 

g(1,2,3) 

g(1,3,2) 

g(2,1,1) g(2,2,1) 

g(2,1,2) g(2,2,2) 

g(2,1,3) 

G(0) 
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Multiple Criteria Hierarchy Process (MCHP) - notation 

E(Gr) – set of elementary 

criteria descending from Gr 

   E(G(1))={g(1,1,1),g(1,1,2), 

                g(1,2,1),g(1,2,2),g(1,2,3), 

                g(1,3,1),g(1,3,2)} 

   E(G(2,2))={g(2,2,1),g(2,2,2)}  

Gk
r – set of criteria descending 

from Gr and located at level k   

G2
(0)={G(1,1),G(1,2),G(1,3),     

 G(2,1), G(2,2),} 

   G3
(2)={g(2,1,1),g(2,1,2),g(2,1,3), 

             g(2,2,1),g(2,2,2)} 

G(0) 

a c b e d h g f 

G(1) G(2) 

G(1,1) G(1,2) G(1,3) G(2,1) G(2,2) 

g(1,1,1) 

g(1,1,2) 

g(1,2,1) g(1,3,1) 

g(1,2,2) 

g(1,2,3) 

g(1,3,2) 

g(2,1,1) g(2,2,1) 

g(2,1,2) g(2,2,2) 

g(2,1,3) 
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Multiple Criteria Hierarchy Process (MCHP) – main idea 

 We wish to consider 

preference relation r 

in each node of 

the hierarchy tree,  

e.g.:  

          iff   222 bUaUba 

          iff   31311,3 dUcUdc ,, 

          iff   12122,1 fUeUfe ,, 

(0) 
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Multiple Criteria Hierarchy Process (MCHP) – main idea 

 In case of preferentially 

independent criteria, 

preference relation r  

should enjoy some intuitive  

properties, e.g.:  

   

       b abababa

b a,...,njba j

13,12,11,1

,

      ,   , 

   1 allfor    







 rr r

(0) 
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Multiple Criteria Hierarchy Process (MCHP) – main idea 

   

       b abababa

b a,...,njba j

13,12,11,1

,

      ,   , 

   1 allfor    







 rr r

      

        ba notbanotbanot

ba not,...,njbanot j

22,21,2

,

      ,  

   1 allfor    







 rr r

    

     bababa

,...,njbaba j

2,21,22

,

 or  

1  one least atfor     







 rrr

(0) 

 In case of preferentially 

independent criteria, 

preference relation r  

should enjoy some intuitive  

properties, e.g.:  
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Multiple Criteria Hierarchy Process (MCHP) – main idea 

 Any MCDM method  

could be used to construct  

preference relation r  

in particular nodes  

using the available 

preference information: 

 MAVT 

 ELECTRE/PROMETHEE 

 UTA 

 … 

 The choice depends on type of aggregation & preference information  

B. Roy, R. Słowiński: Questions guiding the choice of a multicriteria decision  
 aiding method. EURO Journal on Decision Processes, 1 (2013) no.1, 69–97. 

(0) 
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Multiple Criteria Hierarchy Process (MCHP) – main idea 

 

         

         

    

         

         

    

         agwagw

agw

agwagw

agwagw

agw

agwagw

agwagw

aU

,,,,,,,,

,,,,

,,,,,,,,

,,,,,,,,

,,,,

,,,,,,,,

,,,,,,,,

222222122122

312312

212212112112

231231131131

321321

221221121121

211211111111

  

 

  

  

 

  

  

















 Consider the simplest preference  

model – weighted sum 

 

 For any aA, the value of a is: 

 

 

 
  

   211111

11

       

 criterion    

 elementary of index - 

 

11

,,,,

GE

,

GE

ww

ww

g

ww

,















t

t

t

t

tr

t

r

(0) 

The unknown model parameters are  

weights of elementary criteria only   
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Multiple Criteria Hierarchy Process (MCHP) – main idea 

 Each node is associated with  

a marginal value function  

 Elicitation of preferences and  

analysis of recommendation  

in tree nodes: 

weights adapt to preferences  

& preference relations  

follow from weights, e.g.: 

 
       

                   bgwbgwagwagw

bUaUba

,,,,,,,,,,,,,,,,

,,,

231231131131231231131131

313131

    

i.e.,  ,    





(0) 
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MCHP with additive value function  

 Marginal value function  

associated with node r 

 

 

ut() – marginal value function  

monotonically dependent  

on elementary criterion gt 

 

   
 






rt

tr

GE

auaU

   
 

                    auauauauauauau

auaU

,,,,,,,,,,,,,,

GE

231131321221121211111

1

1

  



 
t

t

(0) 



236 

MCHP with additive value function  

 Total value function  

associated with the root 

 

 

 
 
 
 
 
 
 
 
 
 

 

 How to construct marginal value functions ut(), tEL ? 

   



EL

auaU
t

t

(0) 

                   

                 

              

     aUaU

aUaUaUaUaU

auauauauauau

auauauauauauaU

,,,,,

,,,,,,,,,,,,

,,,,,,,,,,,,

21

2212312111

222122312212112231

131321221121211111








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 Direct  or  indirect ? 

 Direct elicitation of numerical values of model parameters by DMs  

demands much of their cognitive effort 

 Indirect = through decision examples 

 Decision aiding based on decision examples is gaining importance 

because: 

 Decision example is a relatively „easy” preference information 

 Decisions can also be observed without active participation of DMs 

 Psychologists confirm that DMs are more confident exercising their 

decisions than explaining them 

 

MCHP with additive value function - preference elicitation by DM   
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 Types of indirect preference information in particular nodes of the tree: 

 Pairwise comparison: a is at least as good as b on criterion Gr 

 

 Intensity of preference: considering criterion Gr or gt,  

a is preferred to b at least as much as c is preferred to d 

 

 

 

 

MCHP with additive value function - preference elicitation by DM   

   bUaUba rrr     

           

            0    , ,

0    , ,









ducubuaudcba

dUcUbUaUdcba

ttttt

rrrrr





J. Figueira, S. Greco, R. Słowiński: Building a set of additive value functions  
   representing a reference preorder and intensities of preference:  
   GRIP method. EJOR, 195 (2009) no.2, 460-486 



Checking for the existence of a compatible value function in node r 

Since            , the only unknown of this LP problem  

are marginal value functions of elementary criteria ut and threshold   
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      2  ,   ,01 Rkk Am,...,kELxuxu ttttt t  
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  1

criteria) elementary of set :(      ,0
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           
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











d,cb,adUcUbUaU

d,cb,adUcUbUaU

babUaU

babUaU
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~

    if    

  if   

     if    

  if   

:to subject  , max

 

 

rrrrr
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
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
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Checking for the existence of a compatible value function in node r 

If       is feasible and * > 0, then there exists at least one value function 

compatible with the preference information 
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Checking for the existence of a compatible value function in node r 

If for the given preference information there is no compatible value 

function, the user can: 

 identify and eliminate „troublesome” pieces of preference information 

(Mousseau et al. 2003), 

 continue to use „not completely compatible” set of value functions 

with an acceptable approximation error (Jacquet-Lagrèze & Siskos 1982), 

 augment the complexity of the value function, e.g., pass from 

additive linear to additive monotonic, or to Choquet integral 
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Calculating necessary and possible preference relations in node r 

 For all pairs of alternatives a,bA, their performances on elementary 

criteria gt(a), gt(b) add to mt characteristic points of marginal value 

function ut , tEL; then        becomes E(a,b) 

 Consider constraints: 

 

 

 The necessary and the possible preference relations (LP problems): 
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RAE
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
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
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 It may be desirable to have a total order and scores of alternatives 

 The idea is to select among compatible value functions that  

value function which better highlights the necessary ranking, i.e., 

maximizes the difference of values for pairs of alternatives a and b,  

such that a ≿N
r b while not(b ≿N

r a) 

 As secondary objective, we minimize the difference of values for  

pairs of alternatives for which no necessary relation holds, i.e., 

such that not(a ≿N
r b) and not(b ≿N

r a) 

 Lexicographic sequence of Gr’s may underline their relative importance 

(Gr is the root criterion or any level criterion, excluding those from EL) 

One can also work with a „representative” value function  

S. Corrente, S. Greco, R. Słowiński: Multiple Criteria Hierarchy Process in Robust  
      Ordinal Regression. Decision Support Systems, 53 (2012) no.3, 660-674 

S. Greco, M. Kadziński, R. SŁowiński:Selection of a representative value  
function in robust multiple criteria sorting. Computers & Operations Research,  

38(11), 1620-1637. 



Properties of necessary and possible preference relations in node r 

 Given two alternatives a,bA, and any non-elementary criterion Gr: 

 

 

 

 

 

 

 

 Remark: hierarchical properties are expressed in terms of preference 

 necessary (i) 

 necessary & possible (ii) 

 possible (iii)  
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    b a,...,njba
NN

j rr r       1 allfor    , 

      b abawj,...,njba
PP

w,
N

j, rrr r        and  ,  , 1 allfor    

      ba not,...,njbanot
PP

j rr r      1 allfor    , 

    rrr ,...,njbaba
P

j
P

1  one least atfor     ,  

(i) 

(ii) 

(iii) 



 Example:  

Ranking of students wrt. hierarchical criteria of Mathematics & Chemistry 

 

 

 

 

 

 

 

 

 

 15 students: A, B, C, D, E, F, H, I, L, M, N, O, P, Q, R  
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Multiple Criteria Hierarchy Process (MCHP) – value function model 

G(0) 

G(1) G(2) 

G(1,1) G(1,2) G(2,1) G(2,2) 

g(1,1,1) g(1,1,2) g(1,2,1) g(1,2,2) g(2,1,1) g(2,2,1) g(2,1,2) g(2,2,2) 

Mathematics Chemistry 

Algebra Analysis 
Analytical 
Chem. 

Organic 
Chem. 

Analytical 
Chem.I 

Applied 
Anal.Chem. 

Organic 
Chem.I 

Organic 
Chem.II 

Group 
Theory 

Linear 
Algebra 

Functional 
Analysis 

Calculus 



 Performances of students on elementary criteria  
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Multiple Criteria Hierarchy Process (MCHP) – value function model 



 Dominance relation in the set of students 

 

 

 

 

 

247 

Multiple Criteria Hierarchy Process (MCHP) – value function model 



 On Chemistry, student I is preferred to student H  

 

 

 

 

 

 Necessary preference relation after the 1st piece of preference information 
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Multiple Criteria Hierarchy Process (MCHP) – value function model 

     
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 On Analytical Chemistry, student E is preferred to student H  

 

 

 

 Necessary preference relation after the 2nd piece of preference information 
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Multiple Criteria Hierarchy Process (MCHP) – value function model 

     

           HHEE

HE

212112212112

1212

,,,,,,,

,,

Uuuu

UU







 On Mathematics, student N is preferred to student Q  

 

 

 
 

 Necessary preference relation after the 3rd piece of preference information 
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Multiple Criteria Hierarchy Process (MCHP) – value function model 

     
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 On Chemistry, student L is preferred to student P  

 

 

 

 

 Necessary preference relation after the 4th piece of preference information 
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Multiple Criteria Hierarchy Process (MCHP) – value function model 

     
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 Necessary preference relation on Mathematics 

 

 

 

 

 

 

 

 

 

 

 

 Remark: the necessary preference relation N≿N
(1)C, N≿N

(1)Q, N≿N
(1)R  

is true on Mathematics but it is not true at the level below on Algebra 
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Multiple Criteria Hierarchy Process (MCHP) – value function model 



 Necessary preference relation on Chemistry 

 

 

 

 

 

 

 

 

 

 

 

 Remark: the necessary preference relation I≿N
(2)H, L≿N

(2)B,D,H,P, O≿N
(2)H  

is true on Chemistry but it is not true at the level below on Analytical Ch. 
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Multiple Criteria Hierarchy Process (MCHP) – value function model 



 Ranking of students by representative value functions 
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Multiple Criteria Hierarchy Process (MCHP) – value function model 

Rank Student 

1 M(0.8808) 

2 N(0.8622) 

3 F(0.6690) 

3 L(0.6690) 

3 A(0.6690) 

6 I(0.5426) 

7 C(0.4915) 

8 O(0.4893) 

9 R(0.4654) 

10 Q(0.4617) 

11 P(0.4190) 

11 E(0.4190) 

13 B(0.3808) 

14 D(0.2117) 

15 H(0.1690) 
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S. Corrente, S. Greco, R. Słowiński: Multiple Criteria Hierarchy Process in Robust  
      Ordinal Regression. Decision Support Systems, 53 (2012) no.3, 660-674 

 Extensions of MCHP applied to value function model 

 Gradual credibility of provided n pieces of preference information: 

for any Gr, nested relations 

 Extreme ranking analysis: for any Gr, one can see the best and the 

worst rank of each alternative assigned by compatible value functions 

 Ordinal classification using UTADISGMS: preference information in 

terms of exemplary assignments wrt any Gr; recommendation in 

terms of possible & necessary assignments CP
r(a), CN

r(a), a,r  

 Group decision: for any subset D of DMs, and for any Gr, one gets  

4 types of preference relation - ≿N,N
r(D), ≿N,P

r(D), ≿P,N
r(D), ≿P,P

r(D) 

Multiple Criteria Hierarchy Process (MCHP) – value function model 

P
n,

P
,

N
n,

N
, rrrr   11   and  



 For each non-elementary criterion Gr, located at level h of the tree,  

the set of descending criteria located at level k>h is denoted by Gk
r : 

 

 

 

 

 

 To each alternative aA, there corresponds a performance vector 

     ELnag,...,ag
n

  where   ,
1 tt

MCHP and Choquet integral preference model 

S. Angilella, S. Corrente, S. Greco, R. Słowiński: Multiple Criteria Hierarchy Process  
     for the Choquet integral. [In]: R.C. Purshouse et al. (eds.): EMO 2013,  
     LNCS 7811, Springer, Berlin, 2013, pp. 475–489 
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k=1 

k=2 

k=3 

level: 



 Given capacity μ defined on the power set of EL (elementary criteria),  

a capacity        on the power set of Gk
r : 

 

     such that  

 

 

 Considering non-elementary criterion Gr (in node r) and alternative aA, 

given capacity μ defined on the power set of EL, the Choquet integral 

score of a: 

 
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MCHP and Choquet integral preference model 
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MCHP and Choquet integral preference model 

259 

 Example:  

Ranking of students wrt. hierarchical criteria of Science & Humanities 

 

 

 

 

 

 

 

 9 students: a, b, c, d, e, f, g, h, k  

G(0) 

G(1) G(2) 

g(1,1) g(1,2) g(2,1) g(2,2) 

Science Humanities 

Mathematics Physics Literature Philosophy 



MCHP and Choquet integral preference model 
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 Evaluation of students on elementary criteria 

 

 

 

 

 

Student Mathematics Physics Literature Philosophy 

a 18 18 12 12 

b 16 16 16 16 

c 14 14 18 18 

d 18 12 16 16 

e 15 15 18 14 

f 18 14 14 18 

g 15 17 18 16 

h 10 20 10 20 

k 14 14 14 14 



MCHP and Choquet integral preference model 
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 Möbius measures on elementary criteria 

 

 

 

 

 

Mathematics m({g(1,1)}) 0.29 

Physics m({g(1,2)}) 0.19 

Literature m({g(2,1)}) 0.29 

Philosophy m({g(2,2)}) 0.19 

Mathematics & Physics m({g(1,1),g(1,2)}) -0.1 

Mathematics & Literature m({g(1,1),g(2,1)}) 0 

Mathematics & Philosophy m({g(1,1),g(2,2)}) 0 

Physics & Literature m({g(1,2),g(2,1)}) 0 

Physics & Philosophy m({g(1,2),g(2,2)}) 0.24 

Literature & Philosophy m({g(2,1),g(2,2)}) -0.1 



MCHP and Choquet integral preference model 
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 Choquet integral score  

     wrt Science (Ch1), Humanities (Ch2), and Overall (Ch) 

 

               Ranking                                                                   

                                                                   Overall:  

         gbfecdhak 

                Science:  

          afdb,gec,kh 

                Humanities:  

          cgeb,d,fkha 

Ch1(a) 
Ch2(a) 
Ch(a) 

18 
12 

14.28 

Ch1(f) 
Ch2(f) 
Ch(f) 

17.05 
16 

15.92 

Ch1(b) 
Ch2(b) 
Ch(b) 

16 
16 
16 

Ch1(g) 
Ch2(g) 
Ch(g) 

16 
17.52 
16.58 

Ch1(c) 
Ch2(c) 
Ch(c) 

14 
18 

15.52 

Ch1(h) 
Ch2(h) 
Ch(h) 

13.5 
13.5 
15.06 

Ch1(d) 
Ch2(d) 
Ch(d) 

16.57 
16 

15.26 

Ch1(k) 
Ch2(k) 
Ch(k) 

14 
14 
14 

Ch1(e) 
Ch2(e) 
Ch(e) 

15 
17.05 
15.54 



MCHP and Choquet integral preference model 
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 Shapley values & interaction indices 

 Shapley value of each elementary criterion wrt parent criterion Gr 

 

 

 

 

 Shapley value of each elementary criterion wrt root criterion G(0) 

 

 

 

 Shapley value & interaction index for Science (G(1)) & Humanities (G(2)) 

      

Gr, r=(1),(2) Science Humanities 

G(r,w) 

w=1,2,3,4 
Mathematics Physics Literature Philosophy 

2
r(G(r,w)) 0.63 0.37 0.63 0.37 

G(r,w), r=(0) 

w=1,2,3,4 
Mathematics Physics Literature Philosophy 

2
r(G(r,w)) 0.24 0.26 0.24 0.26 

G(r,w), r=(0), w=1,2  Science Humanities 

1
r(G(r,w)) 0.5 0.5 

1
r({G(r,1), G(r,2)}) 0.24 
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 A friend of the Einstein family, Max Talmey, tutored Albert and 
recommended him the “Critique of pure reason” when when he was 12 
years old. This became a new Bible for him and he called it his "holy 
geometry book“.  

 

 

Is it reasonable? 
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 Types of indirect preference information supplied by the DM: 

 Considering some reference alternatives a,b,c,dA 

 Pairwise comparison: a is at least as good as b on criterion Gr 
 

 Intensity of preference: considering criterion Gr,  
a is preferred to b at least as much, as c is preferred to d 

 

 Considering some criteria Gr1,Gr2,Gr3,Gr4Gk
r : 

Gr1 is at least as important as Gr2 

 

Gr1 and Gr2 are positively (negatively) interacting 

 

Gr1 is preferred to Gr2 at least as much as Gr3 is preferred to Gr4 

 

  

 

 

 

   bChaChba rrr     

            0     , 


dChcChbChaChc,dba rrrrr

   21 rrrr GG kk 

     2121 ,     , rrrrrr GGGG kk

        04321  rrrrrrrr GGGG kkkk 

MCHP and Choquet integral assessed using ROR 
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S. Angilella, S. Greco, B. Matarazzo (2010). Non-additive robust ordinal regression:  
A multiple criteria decision model based on the Choquet integral.  
European Journal of Operational Research, 201(1), 277-288. 

 Information provided to the DM: 

 Applying Robust Ordinal Regression to Choquet integral (NAROR),  

i.e., solving a LP problem for each pair of alternatives  a,bA  

in each node r, one gets 2 partial relations (necessary & possible): 

 a is weakly preferred to b wrt Gr for all compatible capacities  

                                      a N
r b 

 a is weakly preferred to b wrt Gr for at least one compatible capacity  

                                      a P
r b 

 Remark: in the LP problem of ROR, the only decision variables are  

2-additive Möbius function values representing capacities μ defined on 

the power set of elementary criteria   

MCHP and Choquet integral assessed using ROR 
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S. Angilella, S. Corrente, S. Greco, R. Słowiński: Robust Ordinal Regression &  
   Stochastic Multiobjective Acceptability Analysis in Multiple Criteria Hierarchy  
   Process for the Choquet integral preference model. Omega, 2015 

 MCHP & ROR & Choquet integral identify a set of capacities compaptible 

with preference information  

 To explore the set of compatible capacities, we use the Hit-And-Run 

method (Tervonen et al. 2013) & Stochastic Multiobjctive Acceptability 

Analysis (SMAA - Lahdelma, Hokkanen, Salminen 1998) that yields: 

 the rank acceptability index  bi
k,r – probability that alternative ak gets 

position i in the ranking obtained wrt criterion Gr 

 the pairwise winning index  pr(a,b) – probability of preference 

of a over b on criterion Gr 

MCHP and Choquet integral assessed using ROR & SMAA 

S. Angilella, S. Corrente, S. Greco: Stochastic multiobjective  acceptability  
analysis for the Choquet integral preference model and the scale construction 
 problem. European Journal of Operational Research, (2015), 240(1), 172-182. 
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Interactive optimization with  
Robust Ordinal Regression 



Interactive optimization with Robust Ordinal Regression 

 Robust Ordinal Regression in a loop:  

preference elicitation with constructive learning 

 Results are robust, because they take into account  

partial preference information 



 Pairwise comparisons  
of solutions 

 Best (or worst) solution 
out of a set 

 Ranking of several 
solutions 

 Ordinal or cardinal 
intensity of preference  
for pairs of solutions  

 Sorting of solutions into 
quality classes 

 … 

 Value function 

 Outranking relation 

 Artificial neural network 

 Decision rules 

 Decision trees 

 … 
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Input (preference information) Output (preference model) 

Interactive optimization with Robust Ordinal Regression 



How complex should the preference model be? 

 Model too simple       

     not able to represent user’s preferences 

 Example: linear model unable to capture  

preference information 

 Model too complex/flexible 

     no generalization power, all solutions enter only one front, 

     takes very long to learn all the parameters 

 Example: Dominance relation, general additive model with 

monotonic marginal value functions 

   „Everything should be made as simple as possible  

     – but not simpler”  [Albert Einstein] 

279 



Preference information and model complexity 
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Model complexity 

P
re

fe
re

n
c
e
 i
n
fo

rm
a
ti
o
n
 

Fully specified model 

Many compatible value functions 

Possibly no fully  
compatible model 

1. Discard preference 
information 

2. Find a model with  
minimal error 

1. Pick „representative” value function 
2. Consider all compatible  

value functions 



The NEMO framework   [Branke, Greco, Słowiński, Zielniewicz 2009, 

2010, 2014]    [Branke, Corrente, Greco, Słowiński, Zielniewicz 2014] 

 NEMO integrates ROR into NSGA-II (Deb et al. 2000) 

 Every q iterations, the DM is expressing preferences by comparing 

pairwise some non-dominated solutions in the current population 

 Preference model: 

 Linear value function 

 General additive value function 

 Choquet integral 

 … 

 No scaling of objectives is necessary – NEMO handles 

heterogeneous objectives 
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The NEMO framework 

 NSGA-II: dominance ranking of solutions from a current population 

 

 

 

 

 

 NEMO-0: in non-dominated fronts, individuals are ranked by  

representative value function compatible with preference information 
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NSGA-II 

NEMO-0 

1 

4 

3 

2 

5 
3 

1 

2 

Within the  same front, order  
the individuals with respect  
to the crowding distance 



The NEMO framework 

 NSGA-II: dominance ranking of solutions from a current population 

 

 

 

 

 

 NEMO-I: replaces dominance relation by pairwise necessary 

preference relation 

 O(p2) LPs to solve 

 in every iteration 
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NSGA-II 

NEMO-I 

Within the  same front, order  
the individuals with respect  
to the crowding distance 



The NEMO framework 

 NSGA-II: dominance ranking of solutions from a current population 

 

 

 

 

 NEMO-II: put in the first front solutions that are preferred to all others  

in the population for at least one  

compatible value function 

 only O(p) LPs to solve 
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NSGA-II 

NEMO-II 1 

2 

3 

4 

Never preferred 
under  
NEMO-II-linear 

Within the  same front, order  
the individuals with respect  
to the crowding distance 

Front of NEMO-II  Front of NEMO-I  Front of NSGA-II 



Recent work: NEMO-II-Choquet 

 Use Choquet integral as preference model 

 Well-accepted model in decision theory 

 Allows to model interaction between objectives 

 Adapt complexity of preference model to complexity of preferences 

 Start with linear model 

 Switch to 2-additive Choquet once no linear compatible value 

function can be found 

 Every q iterations the user is expressing preferences by comparing 

two non-dominated solutions 

 Put in the first front solutions that are preferred to all others  

in the population for at least one compatible value function 

 Within the  same front, order the individuals with respect to the 

crowding distance 
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A particular case of the Choquet integral: n=2 

If n=2, then…  
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 2-additive Choquet – positive interaction (synergy)  
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Isoquants of the Choquet integral for two criteria – special cases 
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 2-additive Choquet – negative interaction (redundancy) 
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Graphical interpretation 
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Scaling of objectives 
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NEMO-II-Ch main points 

 Start with the linear value function as preference model 

 Ask every q iterations DM’s preferences by comparing 

two non-dominated solutions 

 Order the solutions by checking if there exists at least 

one compatible model for which x is preferred to all other 

solutions 

 Within the same front order the solutions with respect to 

the crowding distance 

 Switch to the 2-additive Choquet integral preference 

model as soon as the linear model is not able to 

represent the preferences of the DM anymore 

 



Why NEMO-II-Ch?   (DTLZ1-5D) 

• DM compares two n-d solutions in the same front every 10 iterations 

• It is better to start with the simplest model (the linear one); 

• Passing to the 2-additive Choquet integral preference model produces better 

results than passing to the complete Choquet integral model; 

• In NEMO-II-Ch interactions between pairs of criteria are considered. 



Thank you 
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